1
616 Journal of Chemical & Engineering Data, Vol. 55, No. 4, 2010
-
1
49
work of 30.8 mN ·m . Coutinho and co-workers measured
(3) Scurto, A. M.; Aki, S.; Brennecke, J. F. CO2 as a separation switch
-
1
for ionic liquid/organic mixtures. J. Am. Chem. Soc. 2002, 124 (35),
the surface tension at 50 °C with a value of 30.6 mN · m ,
1
0276–10277.
compared with 28.9 mN ·m- from this study.
1
(
4) Thermodynamics of ionic liquids, ionic liquid mixtures, and the
3
.4. Interfacial Tension. The interfacial tension of mixtures
of saturated mixtures of [HMIm][Tf N] and 1-octene were
development of standardized systems. Chem. Int. 2005, 27 (5), 22-
23.
2
(
5) Ahosseini, A.; Ren, W.; Scurto, A. M. Hydrogenation in Biphasic Ionic
Liquid/CO Systems. In Green Chemistry and Engineering with Gas
measured at (10, 25, 50, and 75) °C and are listed in Table 6.
Figure 7 illustrates that the interfacial tension decreases with
temperature to a small extent at (10 and 25) °C and more
significantly at the higher temperatures. Matsuda et al.
investigated the system of [HMIm][PF ] saturated with hexane
and decane and reported interfacial tensions at 25 °C of (8.36
and 9.76) mN ·m , respectively. These amounts are lower than
the interfacial tensions reported for the ([HMIm][Tf N] +
-octene) system in current study.
The interfacial tension between two liquids has been often
2
Expanded Liquids and Near-Critical Media; Hutchenson, K. W.,
Scurto, A. M., Subramaniam, B., Eds.; ACS Symposium Series:
Washington, DC, 2008.
5
0
(
6) Ahosseini, A.; Ren, W.; Scurto, A. M. Understanding Biphasic Ionic
6
2
Liquid/CO Systems for Homogeneous Catalysis: Hydroformylation.
Ind. Eng. Chem. Res. 2009, 95–101.
-1
(7) Ren, W.; Scurto, A. M. Global phase behavior of imidazolium ionic
liquids and compressed 1, 1, 1, 2-tetrafluoroethane (R-134a). AIChE
J. 2009, 55, 2.
2
1
(
8) Ren, W.; Scurto, A. M. Phase Equilibria of Imidazolium Ionic Liquids
and the Refrigerant Gas, 1,1,1,2-Tetrafluoroethane (R-134a). Fluid
Phase Equilib. 2009, 286 (1), 1–7.
related to their air-liquid surface tension. An expression has
been proposed by van Oss and recently applied to IL-alkane
5
1
(
9) Roettger, D.; Nierlich, F.; Krissmann, J.; Wasserscheid, P.; Keim, W.
Method for separation of substances by extraction or by washing them
with ionic liquids. U.S. Patent 7,304,200, 2007.
systems:
(
(
10) Smith, R. S.; Herrera, P. S.; Reynolds, J. S.; Krzywicki, A. Use of
ionic liquids to separate diolefins. U.S. Patent App. 10/308,307, 2002.
11) Ahosseini, A.; Ren, W.; Scurto, A. M. Homogeneous Catalysis in
IL-Oct
IL
Oct
IL Oct
σ
) σ + σ - 2φ
√
σ σ
(8)
IT
Biphasic Ionic Liquids/CO
2.
12) Ahosseini, A.; Ren, W.; Scurto, A. M. Understanding Biphasic Ionic
Liquid/CO Systems for Homogeneous Catalysis: Hydroformylation.
2
Systems. Chem. Today 2007, 25 (2), 40–
where φ is the interaction parameter which, from other systems
in the literature, is near zero for nonpolar mixtures, less than
one for nonpolar/polar systems, and greater than one for polar
4
(
2
5
0
Ind. Eng. Chem. Res. 2009, 48 (9), 4254–4265.
+
polar systems. The regressed parameter φ for the 1-octene
[HMIm][Tf N] system at the four different temperatures is
(
13) Welton, T. Ionic liquids in catalysis. Coord. Chem. ReV. 2004, 248
+
2
(
21-24), 2459–2477.
shown in Table 6. The parameter is just less than unity with a
slight temperature dependence in accordance with a nonpolar/
polar mixture.
(
14) Bonhote, P.; Dias, A. P.; Papageorgiou, N.; Kalyanasundaram, K.;
Gratzel, M. Hydrophobic, highly conductive ambient-temperature
molten salts. Inorg. Chem. 1996, 35 (5), 1168–1178.
(
15) Burrell, A. K.; Sesto, R. E. D.; Baker, S. N.; McCleskey, T. M.; Baker,
G. A. The large scale synthesis of pure imidazolium and pyrrolidinium
ionic liquids. Green Chem. 2007, 9 (5), 449–454.
4
. Conclusions
(
16) Seddon, K. R.; Stark, A.; Torres, M. J. Influence of chloride, water,
and organic solvents on the physical properties of ionic liquids. Pure
Appl. Chem. 2000, 72 (12), 2275–2287.
ILs have a number of applications in multiphase reactions,
extractions, and material processing. However, for an accurate
understanding of the mass transfer, the phase equilibrium and
thermodynamic properties must be understood, especially the
effect of concentration. This investigation measured ther-
modynamic and interfacial properties for the system of
(17) Vargaftik, N. B.; Volkov, B. N.; Voljak, L. D. International tables of
the surface tension of water; American Chemical Society and the
American Institute of Physics for the National Bureau of Standards:
Washington, DC, 1983.
(
18) Zeppieri, S.; Rodriguez, J.; de Ramos, A. L. L. Interfacial Tension of
1
-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-
Alkane + Water Systems. J. Chem. Eng. Data 2001, 46 (5), 1086–
1
088.
amide ([HMIm][Tf N]) and 1-octene, focusing on both the
2
(
19) Prausnitz, J. M.; Lichtenthaler, R. N.; de Azevedo, E. G. Molecular
thermodynamics of fluid-phase equilibria; Prentice Hall PTR: Upper
Saddle River, NJ, 1986.
pure components and the mixtures. Liquid-liquid equilibrium
data indicated that the IL exhibits minimal solubility in the
1
-octene phase, whereas 1-octene has moderate solubility in
(20) Favre, F.; Olivier-Bourbigou, H.; Commereuc, D.; Saussine, L.
Hydroformylation of 1-hexene with rhodium in non-aqueous ionic
liquids: how to design the solvent and the ligand to the reaction. Chem.
Commun. 2001, 15, 1360–1361.
the IL phase. Thus, mass transfer when the two components
are mixed would occur in virtually one direction. The NRTL
model satisfactorily correlated the LLE data with just a slight
under-prediction of the 1-octene fraction in each phase. The
density of the IL mixture decreases with increasing the
concentration of 1-octene and temperature. The excess molar
volume for the mixture of ILs and 1-octene is slightly
negative for all isotherms. Air-liquid surface tensions of
mixtures of the IL + 1-octene have been measured along
with saturated interfacial tensions of the two phases.
(
21) Wasserscheid, P.; Hilgers, C.; Gordon, C. M.; Muldoon, M. J.; Dunkin,
I. R. Ionic liquids: polar, but weakly coordinating solvents for the
first biphasic oligomerisation of ethene to higher a-olefins with cationic
Ni complexes. Chem. Commun. 2001, 2001 (13), 1186–1187.
(
22) Brasse, C. C.; Englert, U.; Salzer, A.; Waffenschmidt, H.; Wassersc-
heid, P. Ionic Phosphine Ligands with Cobaltocenium Backbone:
Novel Ligands for the Highly Selective, Biphasic, Rhodium-Catalyzed
Hydroformylation of 1-Octene in Ionic Liquids. Organometallics 2000,
1
9 (19), 3818–3823.
(
23) Stark, A.; Ajam, M.; Green, M.; Raubenheimer, H. G.; Ranwell, A.;
Ondruschka, B. Metathesis of 1-Octene in Ionic Liquids and Other
Solvents: Effects of Substrate Solubility, Solvent Polarity and Impuri-
ties. AdV. Synth. Catal. 2006, 348, 14.
Acknowledgment
Prof. Jerzy Petera of the Technical University of Łod zˇ , Poland, is
thanked for helpful discussions.
(24) Lei, Z.; Arlt, W.; Wasserscheid, P. Separation of 1-hexene and
n-hexane with ionic liquids. Fluid Phase Equilib. 2006, 241 (1-2),
2
90–299.
(
25) Domanska, U.; Marciniak, A. Solubility of 1-Alkyl-3-methylimida-
zolium Hexafluorophosphate in Hydrocarbons. J. Chem. Eng. Data
Literature Cited
2
003, 48 (3), 451–456.
(
1) Zhao, H.; Xia, S.; Ma, P. Use of ionic liquids as green solvents for
extractions. J. Chem. Technol. Biotechnol. 2005, 80 (10), 1089–1096.
2) Webb, P. B.; Sellin, M. F.; Kunene, T. E.; Williamson, S.; Slawin,
A. M. Z.; Cole-Hamilton, D. J. Continuous flow hydroformylation of
alkenes in supercritical fluid-ionic liquid biphasic systems. J. Am.
Chem. Soc. 2003, 125 (50), 15577–15588.
(26) Jiqin, Z.; Jian, C.; Chengyue, L.; Weiyang, F. Study on the separation
of 1-hexene and trans-3-hexene using ionic liquids. Fluid Phase
Equilib. 2006, 247 (1-2), 102–106.
(27) Meindersma, G. W.; Podt, A. J. G.; de Haan, A. B. Ternary liquid-
liquid equilibria for mixtures of toluene + n-heptane + an ionic liquid.
Fluid Phase Equilib. 2006, 247 (1-2), 158–168.
(