7630 J. Phys. Chem. A, Vol. 114, No. 28, 2010
Zeng et al.
CF3SO2N3. This material is available free of charge via the
References and Notes
(1) See for examples: (a) Claus, P. K. In The Chemistry of Sulphenic
Acids and Their DeriVatiVes; Patai, S., Ed.; John Wiley & Sons: New York,
1990; Chapter 17. (b) Davis, F. A. J. Org. Chem. 2006, 71, 8993–9003. (c)
Davis, F. A.; Kluger, E. W. J. Am. Chem. Soc. 1976, 98, 302–303.
(2) See for examples: (a) Modarresi-Alam, A. R.; Amirazizi, H. A.;
Bagheri, H.; Bijanzadeh, H.-R.; Kleinpeter, E. J. Org. Chem. 2009, 74,
4740–4746. (b) Denehy, E.; White, J. M.; Williams, S. J. Chem. Commun.
2006, 314–316. (c) Petrov, V.; Petrova, V.; Girichev, G. V.; Oberhammer,
H.; Giricheva, N. I.; Ivanov, S. J. Org. Chem. 2006, 71, 2952–2956. (d)
Wang, L. J.; Mezey, P. G. J. Phys. Chem. A 2005, 109, 8819–8825.
(3) See for examples: (a) Panchaud, P.; Chabaud, L.; Landais, Y.;
Ollivier, C.; Renaud, P.; Zigmantas, S. Chem.-Eur. J. 2009, 10, 3606–3614.
(b) Panchaud, P.; Chabaud, L.; Landais, Y.; Ollivier, C.; Renaud, P.;
Zigmantas, S. Chem.-Eur. J. 2004, 10, 3606–3614. (c) Raushel, J.; Pitram,
S. M.; Fokin, V. V. Org. Lett. 2008, 10, 3385–3388.
Figure 8. Contour plots of the vicinal nσ(N) f σ*(S-O) interactions
in FSO2N3 and CF3SO2N3 using RHF/6-31G(d) calculated preorthogonal
natural bond orbitals (PNBOs). Projections on the plane are defined
by the atoms shown in the plots.
elements (Fij), as shown in Figure 8. The “in-plane” nitrogen lone
pair, denoted as nσ(N), is found to strongly interact with the
antibonding orbital of the SdO bond that is antiperiplanar with
respect to the nitrogen lone pair. The NBO analysis of the
predominant resonance structure I (Scheme 2) yields interaction
energies based on second-order perturbation theory, E(2), and NBO
occupancies of antibonding orbitals, which are listed in Table S3
(Supporting Information). The nσ(N) f σ*(S-O) interaction
energies E(2) were calculated (RHF/6-31G(d)) to be 67.3 and 59.9
kJ mol-1 for FSO2N3 and CF3SO2N3, respectively. These large
interaction energies are also reflected in the significant NBO
occupancies for the σ*(S-O)syn antibonding orbitals of 0.27 and
0.20 for FSO2N3 and CF3SO2N3, respectively.
(4) (a) Haist, R.; Mack, H.-G.; Della Ve´dova, C. O.; Cut´ın, E. H.;
´
Oberhammer, H. J. Mol. Struct. 1998, 445, 197–205. (b) Alvarez, R. M. S.;
Cut´ın, E. H.; Romano, R. M.; Mack, H.-G.; Della Ve´dova, C. O.
Spectrochim. Acta, Part A 1998, 54, 605–615.
´
(5) Alvarez, R. M. S.; Cut´ın, E. H.; Mack, H.-G.; Della Ve´dova, C. O.
J. Raman Spectrosc. 1998, 28, 277–281.
(6) (a) Della Ve´dova, C. O.; Cut´ın, E. H.; Mack, H.-G.; Oberhammer,
´
H. J. Mol. Struct. 1996, 380, 167–170. (b) Alvarez, R. M. S.; Cut´ın, E. H.;
Mack, H.-G.; Della Ve´dova, C. O. J. Mol. Struct. 1994, 323, 29–38.
(7) Brunvoll, J.; Hargittai, I.; Seip, R. J. Chem. Soc., Dalton Trans.
1978, 299–302.
(8) (a) Durig, J. R.; Zhou, L.; Gounev, T. K.; Guirgis, G. A.
´
Spectrochim. Acta, Part A 1997, 53, 1581–1593. (b) Alvarez, R. M. S.;
Cut´ın, E. H.; Della Ve´dova, C. O. Spectrochim. Acta, Part A 1995, 51,
555–561. (c) Jo, O. L.; Graybeal, J. D.; Lovas, F. J.; Suenram, R. D. J.
Mol. Spectrosc. 1992, 152, 261–273.
(9) Ruff, J. K. Inorg. Chem. 1965, 4, 567–570.
(10) Badawi, H. M.; Fo¨rner, W.; Al-Ghamdi, K. S. J. Mol. Struct.
(THEOCHEM) 2003, 624, 225–232.
Conclusions
Vibrational spectroscopic studies of FSO2N3 in gas phase,
Ar matrix, and liquid state suggest the existence of only one
conformer, and the two oxygen atoms were supposed to be
structurally nonequivalent based on the matrix IR spectrum of
mixed 18O-labeled FSO2N3. These spectroscopic results were
confirmed by its structure determined by X-ray crystallography,
which shows that the azide group is synperiplanar to one SdO
group (φ(O1S-N1N2) ) -14.8(3)°) and antiperiplanar to the
other one (φ(O2S-N1N2) ) -152.4(2)°) with small but
significant differences in SdO bond lengths. Similar confor-
mational and structural properties were also observed for
CF3SO2N3 in both gas phase (GED) and solid state (X-ray
crystallography). The exclusive presence of the same sterically
unfavorable conformation for FSO2N3 and CF3SO2N3 in all
states is a consequence of the electronic, anomeric nσ(N) f
σ*(S-O) interaction, as confirmed by DFT calculations. This
anomeric effects also explain the longer synperiplanar SdO
bond than the antiperiplanar SdO bond in both sulfonyl azides.
(11) (a) Charette, A. B.; Wurz, R. P.; Ollevier, T. J. Org. Chem. 2000,
65, 9252–9254. (b) Wurz, R. P.; Lin, W.; Charette, A. B. Tetrahedron Lett.
2003, 44, 8845–8848. (c) Benati, L.; Nanni, D.; Spagnolo, P. J. Org. Chem.
1999, 64, 5132–5138.
(12) Zhang, D.; Wang, C.; Mistry, F.; Powell, B.; Aubke, F. J. Fluorine
Chem. 1996, 76, 83–89.
(13) Schno¨ckel, H. G.; Willner, H. In Infrared and Raman Spectroscopy,
Methods and Applications; Schrader, B., Ed.; VCH: Weinheim, 1994.
(14) Becke, A. D. J. Chem. Phys. 1993, 98, 5648–5652.
(15) Perdew, J. P. Phys. ReV. B 1986, 33, 8822–8824.
(16) Adamo, C.; Barone, V. J. Chem. Phys. 1998, 108, 664–675.
(17) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. ReV. 1988, 88,
899–926.
(18) Weinhold, F. , Ed.; NBO 5.0 Program Manual; Theoretical
Chemistry Instituyte, University of Wisconsin: Madison, WI, 2001.
(19) Wendt, M.; Weinhold, F.; NBOView 1.1: NBO Orbital Graphics;
University of Wisconsin: Madison, 2001.
(20) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Montgomery, J. A. , Jr.; Vreven, T.; Kudin, K. N.;
Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.;
Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.;
Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;
Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li,
X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.;
Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.;
Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.;
Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels,
A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.;
Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.;
Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz,
P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.;
Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson,
B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, reVison
D.01; Gaussian, Inc.: Wallingford, CT, 2003.
(21) Zeng, X. Q.; Gerken, M.; Beckers, H.; Willner, H. Inorg. Chem.
2010, 49, 3002–3010.
(22) CrysAlisPro, Version 1.171.33.42, Oxford Diffraction Ltd.
(23) Sheldrick, G. M. SHELXTL97, University of Go¨ttingen, 1997.
(24) Mootz, D.; Merschenz-Quack, A. Acta Crystallogr. 1985, C41, 924–925.
(25) Besenyei, G.; Pa´ka´nyi, L.; Foch, I.; Sima´ndi, L. I.; Ka´lma´n, A.
J. Chem. Soc., Perkin Trans. 2 2000, 1798–1802.
Acknowledgment. X. Z. expresses his thanks to the Alex-
ander von Humboldt Foundation for a research grant; H. B. and
H. W. acknowledge support from the Deutsche Forschungsge-
meinschaft and the Fonds der Chemischen Industrie and M.G.
acknowledges the University of Lethbridge for granting a study
leave. We are grateful to Dr. Wenda for providing (CF3SO2)2O.
Supporting Information Available: Matrix-IR spectra
(Figure S1) of FSO2N3 in the range of 530-460 cm-1; packing
diagrams of FSO2N3 (Figure S2) and CF3SO2N3 (Figure S3) in
the solid state; experimental and calculated 14/15N isotopic shifts
of FSO2N3 (Table S1) and CF3SO2N3 (Table S2); NBO second-
order perturbative estimates of interaction energies and NBO
occupancies (Table S3); X-ray crystallographic files in CIF
format for the structure determinations of FSO2N3 and
JP103616Q