Al-ITQ-7 ZEOLITE FOR 2-METHOXYNAPHTHALENE ACYLATION
REFERENCES
89
1. Kuroda, C., Sci. Papers Phys. Chem. Res. 18, 51 (1932).
2. Corma, A., Chem. Rev. 95, 559 (1995).
3. Spagnol, M., Gilbert, L., and Alby, D., Ind. Chem. Libr. 8, 29 (1996).
4. Fang, R., Harvey, G., Kouwenhoven, H. W., and Prins, R., Appl. Catal.
A General 130, 67 (1995).
5. Corma, A., Climent, M. J., Garc´ıa, H., and Primo, J., Appl. Catal. 49,
109 (1989).
6. Harvey, G., Vogt, A., Kouwenhoven, H. W., and Prins, R., Proc. Int.
Zeol. Conf. 9th 2, 363 (1993).
7. Rohan, D., Canaff, C., Fromentin, E., and Guisnet, M., J. Catal. 177,
296 (1998).
8. Spagnol, M., Gilbert, L., Guillot, H., and Tirel, Ph-J., Patent PCT, Int.
Appl. WO 97 48,665 (1997).
9. Gilbert, L., and Spagnol, M., Patent PCT, Int. Appl. WO 97 17,324
(1997).
10. Harvey, G., and Mader, G., Collect. Czech. Chem. Commun. 57, 862
(1992).
11. Neuber, M., and Leupold, E. I., Eur. Pat. Appl. EP 459495 B1 (1991).
12. Yadav, G. D., and Krishnan, M. S., Chem. Eng. Sci. 54, 4189 (1999).
13. Harvey, G., Binder, G., and Prins, R., Stud. Surf. Sci. Catal. 94, 397
(1995).
FIG. 10. Mean square displacements for 2-MN, 2-AMN, and 1-AMN
in Beta and ITQ-7 zeolites. The diffusion coefficients obtained according
to Eq. [2] (see text) are shown in Table 3.
14. Heinichen, H. K., and Ho¨lderich, W. F., J. Catal. 185, 408 (1999).
15. Gunnewegh, E. A., Gopie, S. S., and van Bekkum, H., J. Mol. Catal.
A Chem. 106, 151 (1996).
16. Bharathi, P., Waghmode, S. B., Sivasanker, S., and Vetrivel, R., Bull.
Chem. Soc. Jpn. 72, 2161 (1999).
17. Fromentin, E., Coustard, J. M., and Guisnet, M., J. Catal. 190, 433
(2000).
18. Villaescusa, L. A., Barret, P. A., and Camblor, M., Angew. Chem. Int.
Ed. 38, 1997 (1999).
ITQ-7 can be found in the fact that 2-AMN uses three chan-
nels whereas the 1-AMN uses only one channel. This fact
confirms that a higher selectivity to 2-AMN can be expected
in ITQ-7 than in Beta during the acylation of 2-MN with
acetic anhydride.
19. Corma, A., D´ıaz-Caban˜as, M. J., and Forne´s, V., Angew. Chem. Int.
Ed. 39, 2346 (2000).
CONCLUSIONS
20. Zones, S. I., and Nakagawa, Y., Microp. Mater. 3, 547 (1994).
21. Freyhardt, C. C., Tsapatsis, M., Lobo, R. F., Balkus, K. J., Jr., and Davis,
M. E., Nature 381, 295 (1996).
Zeolite Al-ITQ-7, a tridirectional zeolite with some
smaller channels than Beta, is active for the acylation of 2-
methoxynaphthalene with acetic anhydride, giving a higher 22. Botella, P., Corma, A., Lo´pez-Nieto, J. M., Valencia, S., Lucas, M. E.,
and Sergio, M., Appl. Catal. A General 203, 251 (2000).
23. Lobo, R. F., and Davis, M. E., Microp. Mater. 3, 61 (1994).
24. Chica, A., and Corma, A., J. Catal. 187, 167 (1999).
25. Meier, W. M., Olson, D. H., and Baerlocher, Ch., “Atlas of Zeo-
selectivity to the desired 2-acetyl-6-methoxynaphthalene
than that obtained with Beta. It has been shown by Molec-
ular Dynamics calculation that this is due to the much
lower diffusion coefficient of 1-AMN in Al-ITQ-7 than in
Beta.
By using anhydrides of different molecular sizes it has
been shown that, at least in the Beta zeolite, the bulkiest
isomer is formed not only on the external surface but also
within the pores of the zeolites. In general, a decrease in
lite Structure Types,” 4th ed. Elsevier, Amsterdam (1996). Also at
26. Shannon, D. F., Math. Comp. 24, 647 (1970).
27. Gale, J. D., J. Chem. Soc. Faraday Trans. 93, 629 (1997).
28. Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W., DiNola, A.,
and Haak, J. R., J. Chem. Phys. 81, 3684 (1984).
29. Verlet, L., Phys. Rev. 159, 98 (1967).
crystallite size increases the reaction rate but decreases the 30. Demontis, P., Fois, E. S., Suffriti, G. B., and Quartieri, S. J., Phys. Chem.
94, 4329 (1990).
selectivityto the lessbulkyand more desired 2-AMN. An ef-
ficient way to remove the surface acid sites without blocking
the pore mouths combined with the use of Beta or Al-ITQ-
31. Deem, M. W., Newsam, J. M., and Creighton, J. A., J. Am. Chem. Soc.
114, 7198 (1992).
32. Sastre, G., Catlow, C. R. A., and Corma, A., J. Phys. Chem. B 103, 5187
7 with small crystallites should maximize both conversion
and selectivity to 2-AMN.
(1999).
33. Smith, W., and Forester, T. R., J. Mol. Graph. 14, 136 (1996).
34. Allen, M. P., and Tildesley, D., “Molecular Simulation of Liquids,”
Oxford Univ. Press, Oxford, 1980.
35. Catlow, C. R. A., Freeman, C. M., Vessal, B., Tomlinson, S. M., and
Leslie, M., J. Chem. Soc. Faraday Trans. 87, 1947 (1991).
36. Oie, T., Maggiora, T. M., Christoffersen, R. E., and Duchamp, D. J.,
Int. J. Quant. Chem. Quant. Biol. Symp. 8, 1 (1981).
37. Ditchfield, R., Hehre, W. J., and Pople, J. A., J. Chem. Phys. 54, 724
(1971).
ACKNOWLEDGMENTS
The authors thank the Comisio´n Interministerial de Ciencia y Tec-
nolog´ıa in Spain (Project MAT 97-0561 and MAT 97-1016-C02-01) for
financial support and the Centro de Investigaciones Energeticas, Medio
Ambientales y Tecnologicas for the use of their computing facilities.