3806 J. Phys. Chem. A, Vol. 105, No. 15, 2001
Tae et al.
TABLE 2: Lifetime and Decay Rate Constant of Adamantene with Representative Quenchers
quencher
kQ(1), M-1 s-1
kQ(48), M-1 s-1
8.7 × 101
quencher
kQ(1), M-1 s-1
kQ(48), M-1 s-1
methanol
1,3-cyclohexadiene
tris(trimethylsilyl)silane
8.4 × 104
1.8 × 105
6.3 × 105
tri-n-butyltin hydride
acetic acid
oxygen
6.3 × 104
7.0 × 106
1.4 × 107
5.4 × 107
low. Furthermore, it was not possible to trap carbene 6 with
piperidine to form an adduct in more than trace quantities.23
However, photolysis of 5 in the presence of 1,3-butadiene yields
a product with the same retention time (gas chromatography)
and mass spectral fragmentation pattern as an authentic sample
of 10 generously provided by Professor Jones.
methanol, 8.4 × 104 M-1 s-1; 1,3-cyclohexadiene, 1.8 × 105
M-1 s-1; acetic acid, 1.4 × 107 M-1 s-1; oxygen, 5.4 × 107
M-1 s-1. Adamantene is considerably more reactive than
2-phenyladamantene.
Acknowledgment. Support of this work by the NSF is
gratefully acknowledged (Grant CHE-9613861). We are in-
debted to Professors Berson and Wiberg of Yale University for
their generous donation of the matrix isolation equipment used
in this work. We are also indebted to Professor M. Jones, Jr.
for an authentic sample of the adamantene-1,3-butadiene
Diels-Alder adduct.
1 decays over many microseconds in a second-order process
to form a mixture of known dimers. The decay of 1 is
accelerated in the presence of a saturating concentration of
oxygen by a factor of roughly 3.6. From this it is possible to
estimate kO as 5.4 × 107 M-1 s-1 (Table 2).
2
The decay of adamantene is pseudo-first-order in the presence
of quenchers (methanol, 1,3-cyclohexadiene, tris(trimethylsilyl)
silane, tri-n-butyltin hydride, acetic acid) of the strained alkene.
The experimental decays are analyzed to yield time constants
Supporting Information Available: Energies and geom-
etries of the stationary points for 1, 6, and 8 and configurations
and states involved in the electronic transitions of 1 and 8. This
material is available free of charge via the Internet at http://
pubs.acs.org.
k
obs. Plots of kobs versus the concentration of quencher, Q, are
linear (Figure 4). The slopes of these plots represent values of
kQ, the absolute second-order rate constant of reaction of
adamantene with quencher (Table 2). Adamantene undergoes
reaction with a diene, a hydrogen atom and a proton donor at
easily measured rates as expected from its large strain energy
and known chemistry.2,4,7
Unsurprisingly, as seen in Table 2, parent adamantene is
significantly more reactive than sterically blocked derivative
4.8
References and Notes
(1) (a) Bredt, J.; Thouet, H.; Schmitz, L. Justus Liebigs Ann. Chem.
1924, 437, 1. (b) Warner, P. M. Chem. ReV. 1989, 89, 1067.
(2) (a) Michl, J.; Radziszewski, J. G.; Downing, J. W.; Kopecky, J.
Pure Appl. Chem. 1987, 59, 1613. (b) Michl, J.; Radziszewski, G. J.;
Downing, J. W.; Wiberg, K. B.; Walker, F. H.; Miller, R. D.; Kovacic, P.;
jawdosiuk, M.; Bonacic-Koutecky, V. Pure Appl. Chem 1983, 55, 313. (c)
Conlin, R. T.; Miller, R. D.; Michl, J. J. Am. Chem. Soc. 1979, 101, 7637.
(3) Maier, W. F.; Schleyer, P. v. R. J. Am. Chem. Soc. 1981, 103,
1891.
IV. Conclusions
(4) (a) Alberts, A. H.; Strating, J.; Wynberg, H. Tetrahedron Lett. 1973,
3047. (b) Gano, J. E.; Eizenberg, L. J. Am. Chem. Soc. 1973, 95, 972. (c)
Grant, M. A.; McKervey, M. A.; Step, G. J. Chem. Soc., Perkin Trans.
1976, 1, 234. (d) Gillespie, D. G.; Walker, B. J. Tetrahedron Lett. 1977,
1673. (e) Cadogan, J. I. G.; Leardini, R. J. Chem. Soc., Chem. Commun.
1979, 783. (f) Lenoir, D.; Kornrumpf, W.; Fritz, H. P. Chem. Ber. 1983,
116, 2390.
(5) (a) Grant, D.; McKervey, M. A.; Rooney, J. J.; Samman, N. G.;
Step, G. J. Chem. Soc., Chem. Commun. 1972, 1186. (b) Lenoir, D.
Tetrahedron Lett. 1972, 4049.
(6) (a) Jones, M., Jr. In AdVances in Carbene Chemistry 2; Brinker,
U., Ed.; JAI Press: Stamford, CT, 1998; p 77. (b) Kohl, E.; Stroter, T.;
Siedschlag, C.; Polburn, K.; Szeimies, G. Eur J. Org. Chem. 1999, 3057.
(c) Geise, C. M.; Hadad, C. M. J. Am. Chem. Soc. 2000, 122, 5861.
(7) (a) Martella, D. J.; Jones, M., Jr.; Schleyer, P. v. R. J. Am. Chem.
Soc. 1978, 100, 2896. (b) Bian, N.; Jones, M., Jr. J. Am. Chem. Soc. 1995,
117, 8957.
3-Noradamantyl diazirine 5 was deposited into an argon
matrix at 14 K. Exposure to 350 nm light consumed the diazirine
and led to the appearance of the known UV and IR spectra of
adamantene. Noradamantylcarbene was not observed in the
matrix. Photolysis (320 nm) of matrix-isolated adamantene led
to its conversion into protoadamant-3-ene. Photolysis (254 nm)
of 8 led to isomerization back to 1. Strained alkenes 1 and 8
interconvert through the bridgehead carbene. The IR and UV
spectra of the strained alkenes are adequately simulated by
B3LYP and INDO/S calculations with single and double
excitations.
Laser flash photolysis (351 nm) of diazirine 5 in benzene
produced the transient spectrum of adamantene (λmax ) 325
nm). The bridgehead carbene was not detected by the pyridine-
ylide method. The absolute rate constants of reaction of
adamantene were determined with the following quenchers:
(8) Hirai, K.; Tomioka, H.; Okazaki, T.; Tokunaga, K.; Kitagawa, T.;
Takeuchi, K. J. Phys. Org. Chem. 1999, 12, 165.
(9) (a) Wilt, J. W.; Schneider, C. A.; Dabek, H. F., Jr.; Kraemer, J. F.
J. Org. Chem. 1966, 31, 1543. (b) Wolf, A. D.; Jones, M., Jr. J. Am. Chem.
Soc. 1973, 95, 8209. (c) Ruck, R. T.; Jones, M., Jr. Tetrahedron Lett. 1998,
39, 4433.
(10) Yao, G.; Rempala, P.; Bashore, C.; Sheridan, R. S. Tetrahedron
Lett. 1999, 40, 17.
(11) Farc¸asiu, M.; Farc¸asiu, D.; Conlin, R. T.; Jones, M., Jr.; Schleyer,
P.v. R. J. Am. Chem. Soc. 1973, 95, 8207.
(12) (a) Eaton, P. E.; Hoffmann, K.-L. J. Am. Chem. Soc. 1987, 109,
5285. (b) Eaton, P. E.; Appell, R. B. J. Am. Chem. Soc. 1990, 112, 4055.
(c) Eaton, P. E.; White, A. J. J. Org. Chem. 1990, 55, 1321.
(13) Chen, N.; Jones, M., Jr.; White, W. R.; Platz, M. S. J. Am. Chem.
Soc. 1991, 113, 4981.
(14) Ohno, M.; Itoh, M.; Umeda, M.; Furuta R.; Kondo, K.; Equchi, S.
J. Am. Chem. Soc. 1996, 118, 7075.
(15) Sellers, S. F.; Klebach, T. C.; Hollywood, F.; Jones, M., Jr. J. Am.
Chem. Soc. 1982, 104, 5492.
(16) Gritsan, N. P.; Zhai, H. B.; Yuzawa, T.; Karweik, D.; Brooke, J.;
Platz, M. S. J. Phys. Chem. A 1997, 101, 2833.
(17) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.;
Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G.
Figure 4. kobs of decay of 1 vs [MeOH] in benzene at ambient
temperature.