To date, glycoconjugate mimetics, or neoglycoconjugates,
containing a variety of unnatural linkages between the
carbohydrate and aglycone moieties have also been ex-
plored.9,10 This mimicry allows rapid and convenient access
to a wide variety of neoglycopeptides and neoglycoproteins
that may also maintain, or even enhance, the biological
activity of the natural glycoproteins. One of the most studied
of these unnatural linkages is the triazole ring formed via
1,3-dipolar cycloaddition (click chemistry) of an organic
azide to a terminal alkyne.11-14 There are a number of
extensive reviews on this topic.15-18 Previous work by Rutjes
et al.19 made use of protected building blocks to synthesize
a series of triazole-linked glycosyl amino acids and dipep-
tides. Danishefsky’s group20 and Walsh et al.21 have
independently reported the union of unprotected carbohy-
drates and peptides containing a limited range of side chains
using click chemistry.22 Macmillan’s group reported that the
triazole linkage itself was compatible with conditions used
in native chemical ligation (6 M guanidine HCl, 0.3 M
Na2PO4 buffer pH 8.0, 10 mM tris(2-carboxyethyl)phosphine,
1% w/v sodium 2-mercaptoethanesulfonate (MESNA)).23
Davis et al.24,25 have utilized click chemistry to demonstrate
the diversity of post-translational chemical protein modifica-
tion. Semisynthetic lipoproteins have also been synthesized
using click chemistry by Moroder et al.26 Although the
ligation of peptides using click chemistry has been reported,27
somewhat surprisingly, a detailed investigation of reaction
conditions for click reactions, at useful scale with isolation
of pure products and full product characterization, between
sugar azides and alkyne-containing unprotected peptides that
contain all 20 amino acids found in proteins has not been
carried out. Furthermore, a one-pot approach that combines
native chemical ligation and click chemistry to yield neogly-
copeptides has not been explored. Combining these two
chemistries would provide a powerful tool to synthesize
neoglycopeptides as it avoids low yielding intervening HPLC
purifications steps.
Herein we report our studies on the use of click chemistry
to attach an azido sugar to propargyl-containing unprotected
peptides. The compatibility of the key click reaction with
the thiazolidine (Thz-), Cys-, -thioester, and acetamidomethyl
(Acm) moieties used in total protein synthesis by thioester-
mediated amide-forming chemical ligation methods and most
importantly, for the first time, the use of orthogonal native
chemical ligation and copper(I)-mediated alkyne-azide
cycloaddition reactions in a one-pot approach demonstrate
a convenient method to access highly sophisticated as-
semblies of neoglycopeptides efficiently (Figure 1).
Figure 1
chemistry.
. Proposed one-pot native chemical ligation and click
(7) Pratt, M. R.; Bertozzi, C. R. Chem. Soc. ReV. 2005, 34, 58–68
(8) Davis, B. G. Angew. Chem., Int. Ed. 2009, 48, 4674–4678
(9) Specker, D.; Wittmann, V. Top. Curr. Chem. 2007, 267, 65–107
(10) Nicotra, F.; Cipolla, L.; Peri, F.; La Ferla, B.; Redaelli, C. AdV.
Carbohydr. Chem. Biochem. 2007, 61, 353–398
(11) Toenøe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem. 2002,
67, 3057–3064
(12) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B.
Angew. Chem., Int. Ed. 2002, 41, 2596–2599
(13) Huisgen, R. Chem. Ber. 1967, 100, 2494–2507
(14) Huisgen, R. Pure Appl. Chem. 1989, 61, 613–628
(15) Meldal, M.; Tornoe, C. W. Chem. ReV. 2008, 108, 2952–3015
.
To illustrate this strategy, we designed and synthesized
three propargyl-containing model peptides using in situ Boc
chemistry solid phase peptide synthesis (SPPS) (Figure 2).28
.
.
.
.
.
.
.
.
(16) Kolb, H. C.; Sharpless, K. B. Drug DiscoVery Today 2003, 8, 1128–
1137
.
(17) Bock, V. D.; Hiemstra, H.; van Maarseveen, J. H. Eur. J. Org.
Chem. 2006, 2006, 51–68
.
(18) Lutz, J. Angew. Chem., Int. Ed. 2007, 46, 1018–1025
.
(19) Rutjes, F. P. J.; van Delft, F. L.; Blaauw, R. H.; Quaedflieg,
P. J. L. M.; Keereweer, A. R.; Groothuys, S.; Kuijpers, B. H. M. Org. Lett.
2004, 6, 3123–3126.
(20) Danishefsky, S. J.; Chen, G.; Chen, J.; Wan, Q. J. Org. Chem.
2006, 71, 8244–8249.
(21) Walsh, C. T.; Lin, H. J. Am. Chem. Soc. 2004, 126, 13998–14003.
(22) For reviews dedicated to click neoglycoconjugates, see: (a) Dondoni,
A. Chem. Asian J. 2007, 2, 700–708. (b) Field, R. A.; Nepogodiev, S. A.;
Dedola, S. Org. Biomol. Chem. 2007, 5, 1006–1017.
Figure 2. Synthesized peptides 1, 2, and 3.
(23) Macmillan, D.; Blanc, J. Org. Biomol. Chem. 2006, 4, 2847–2850.
(24) Davis, B. G.; van Kasteren, S. I.; Kramer, H. B.; Gamblin, D. P.
These three peptides contained all 20 genetically encoded
amino acids found in proteins, a thioester moiety (peptide
1), a Thz- moeity (peptide 2), and a Cys(Acm) (peptide 3).
Nat. Protocols 2007, 2, 3185–3194
.
(25) Davis, B. G.; van Kasteren, S. I.; Kramer, H. B.; Jensen, H. H.;
Campbell, S. J.; Kirkpatrick, J.; Oldham, N. J.; Anthony, D. C. Nature 2007,
446, 1105–1109
.
(26) Moroder, L.; Musiol, H.; Dong, S.; Kaiser, M.; Bausinger, R.;
Zumbusch, A.; Bertsch, U. ChemBioChem 2005, 6, 625–628.
(27) Xiao, J.; Tolbert, T. J. Org. Lett. 2009, 11, 4144–4147.
(28) Schnolzer, M.; Alewood, P.; Jones, A.; Alewood, D.; Kent, S. B. H.
Int. J. Pept. Res. Ther. 2007, 13, 31–44.
Org. Lett., Vol. 11, No. 22, 2009
5271