F
R. Murakami et al.
Cluster
Synlett
(7) C(sp3)–H borylation of cyclopropanes, see: (a) Liskey, C. W.;
Hartwig, J. F. J. Am. Chem. Soc. 2013, 135, 3375. (b) Murakami,
R.; Tsunoda, K.; Iwai, T.; Sawamura, M. Chem. Eur. J. 2014, 20,
13127; see also ref. 5e,g.
200%). 1H NMR (400 MHz, CDCl3): δ = 1.24 (s, 12 H), 1.38 (t, J =
7.6 Hz, 2 H), 3.24 (t, J = 7.6 Hz, 2 H), 7.32 (td, J = 8.4, 1.2 Hz, 1 H),
7.42 (td, J = 7.6, 0.8 Hz, 1 H), 7.82 (d, J = 8.0 Hz, 1 H), 7.94 (d, J =
8.4 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 11.10 (br), 24.75 (4
C), 28.85, 83.36 (2 C), 121.42, 122.41, 124.42, 125.67, 135.19,
153.19, 173.81. 11B NMR (128 MHz, CDCl3): δ = 32.6. IR (ATR):
2976, 2931, 1519, 1436, 1370, 1313, 1142, 1082, 967, 845, 758
(8) Borylation of benzylic C(sp3)–H bonds: (a) Shimada, S.;
Batsanov, A. S.; Howard, J. A. K.; Marder, T. B. Angew. Chem. Int.
Ed. 2001, 40, 2168. (b) Ishiyama, T.; Ishida, K.; Takagi, J.;
Miyaura, N. Chem. Lett. 2001, 30, 1082. (c) Mertins, K.; Zapf, A.;
Beller, M. J. Mol. Catal. A: Chem. 2004, 207, 21. (d) Boebel, T. A.;
Hartwig, J. F. Organometallics 2008, 27, 6013. (e) Larsen, M. A.;
Wilson, C. V.; Hartwig, J. F. J. Am. Chem. Soc. 2015, 137, 8633.
(f) Palmer, W. N.; Obligacion, J. V.; Pappas, I.; Chirik, P. J. J. Am.
Chem. Soc. 2016, 138, 766.
. ESI-HRMS: m/z [M +
cm–1 H]+ calcd for C15H21O2N10BS:
289.14169; found: 289.14170.
(12) The Silica-SMAP-Ir catalyst was easily separated from the reac-
tion mixture by filtration. However, attempts to reuse the cata-
lyst were unsuccessful.
(13) (a) Ochida, A.; Hamasaka, G.; Yamauchi, Y.; Kawamorita, S.;
Oshima, N.; Hara, K.; Ohmiya, H.; Sawamura, M. Organometal-
lics 2008, 27, 5494. (b) Ochida, A.; Hara, K.; Ho, H.; Sawamura,
M. Org. Lett. 2003, 5, 2671.
(9) Borylation of allylic C(sp3)–H bonds: (a) Caballero, A.; Sabo-Eti-
enne, S. Organometallics 2007, 26, 1191. (b) Olsson, V. J.; Szabó,
K. J. Angew. Chem. Int. Ed. 2007, 46, 6891. (c) Olsson, V. J.; Szabó,
K. J. J. Org. Chem. 2009, 74, 7715. (d) Deng, H.-P.; Eriksson, L.;
Szabó, K. J. Chem. Commun. 2014, 50, 9207.
(10) (a) Kawamorita, S.; Murakami, R.; Iwai, T.; Sawamura, M. J. Am.
Chem. Soc. 2013, 135, 2947. (b) Kawamorita, S.; Miyazaki, T.;
Iwai, T.; Ohmiya, H.; Sawamura, M. J. Am. Chem. Soc. 2012, 134,
12924. (c) Iwai, T.; Murakami, R.; Harada, T.; Kawamorita, S.;
Sawamura, M. Adv. Synth. Catal. 2014, 356, 1563. (d) Iwai, T.;
Harada, T.; Hara, K.; Sawamura, M. Angew. Chem. Int. Ed. 2013,
52, 12322.
(11) Typical Procedure for the C(sp3)–H Borylation of Alkyl Side
Chains on 1,3-Azoles with a Silica-SMAP-Ir Catalyst System
(Table 1, Entry 1)
(14) The C(sp2)–H borylation of heteroarenes including 1,3-ben-
zazoles catalyzed by the Ir-Me4Phen system: Larsen, M. A.;
Hartwig, J. F. J. Am. Chem. Soc. 2014, 136, 4287.
(15) In some cases, the formation of C=N reduction products of start-
ing materials 1 was indicative by 1H NMR analyses of the crude
products. Similar C=N reduction was observed in the C(sp3)–H
boylation of small-ring carbocycles bearing 1,3-azoles with the
Silica-SMAP-Ir catalyst system (ref. 7b). The desired products 3
or 5 could be isolated by bulb-to-bulb distillation or silica gel
column chromatography.
(16) Cyclooctene would act as a scavenger of H2 or HBpin. The use of
alkene derivatives as a H2 or HBpin scavenger in an Ir-catalyzed
aromatic C–H borylation of aldimines was also reported:
(a) Sasaki, I.; Amou, T.; Ito, H.; Ishiyama, T. Org. Biomol. Chem.
2014, 12, 2041. (b) Sasaki, I.; Ikeda, T.; Amou, T.; Taguchi, J.; Ito,
H.; Ishiyama, T. Synlett 2016, 27, in press; DOI: 10.1055/s-0035-
1561578.
(17) Methyl groups on the thiazole ring in 1g were necessary for the
C(sp3)–H borylation. In fact, the reaction of 2-ethylthiazole with
2 in the presence of the Silica-SMAP-Ir catalyst (2 mol%, 60 °C,
15 h) gave the corresponding arylboronates exclusively via the
C(sp2)–H borylation.
(18) Sueki, S.; Kuniobu, Y. Org. Lett. 2013, 15, 1544.
(19) Li, L.; Zhao, S.; Joshi-Pangu, A.; Diane, M.; Biscoe, M. R. J. Am.
Chem. Soc. 2014, 136, 14027.
In a glove box, Silica-SMAP (0.07 mmol/g, 57.1 mg, 0.0040
mmol, 2 mol%), bis(pinacolato)diboron (2, 50.8 mg, 0.20 mmol),
and anhydrous, degassed THF (0.3 mL) were placed in a 10 mL
glass tube containing a magnetic stirring bar. A solution of
[Ir(OMe)(cod)]2 (1.3 mg, 0.0020 mmol, 1 mol%) in THF (0.7 mL)
and 2-ethylbenzo[d]thiazole (1a, 97.9 mg, 0.60 mmol) were
added successively. The tube was sealed with a screw cap and
removed from the glove box. The reaction mixture was stirred
at 60 °C for 15 h, and filtered through a glass pipette equipped
with a cotton filter. The solvent was removed under reduced
pressure. An internal standard (1,1,2,2-tetrachloroethane) was
added to the residue. The yields of the products 3a and 4a were
determined by 1H NMR spectroscopy (82% and 32% yields,
respectively). The crude material was then purified by Kugel-
rohr distillation (1 mmHg, 145 °C), to give the corresponding
product 3a (43.1 mg, 0.15 mmol, 75% yield) contaminated with
the diborylation product 4a (<1%) and traces of impurities, as
estimated by 1H NMR spectroscopy. Total yield over 100% based
on 2 indicates that HBpin formed during catalytic turnover also
served as a borylating reagent (theoretical maximum yield is
(20) Bruno, N. C.; Tudge, M. T.; Buchwald, S. L. Chem. Sci. 2013, 4,
916.
(21) Isolated product 7 was contaminated with 4,4′-dimethoxy-
1,1′-biphenyl (2%), probably generated through homocoupling
of 4-chloroanisole.
(22) Matteson, D. S. Chem. Rev. 1989, 89, 1535.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2016, 27, A–F