Organic Letters
Letter
elimination intermediate D. This calculated activation free
energy is much higher than the free energy of C−H activation
Chem. Soc. 1986, 108, 2728. (f) Bedford, R. B.; Coles, S. J.; Hursthouse,
M. B.; Limmert, M. E. Angew. Chem., Int. Ed. 2003, 42, 112.
(
3) (a) Zhang, F.-L.; Hong, K.; Li, T.-J.; Park, H.; Yu, J.-Q. Science
016, 351, 252. (b) Xu, Y.; Young, M. C.; Wang, C.; Magness, D. M.;
Dong, G. Angew. Chem., Int. Ed. 2016, 55, 9084.
4) (a) Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976, 734.
(
31.8 kcal/mol), which is inconsistent with our experiments
2
identifying C−H bond cleavage as the rate-determining step.
Finally, protonolysis and dehydration regenerate the active
(
III
rhodium catalyst [Cp*Rh ] and release the detected naph-
(
(
b) Alonso, F.; Beletskaya, I. P.; Yus, M. Chem. Rev. 2004, 104, 3079.
c) Patil, N. T.; Yamamoto, Y. Chem. Rev. 2008, 108, 3395. (d) Trost, B.
thylation intermediate E. Dehydration in E occurs preferentially,
forming the cyclic enol ether intermediate F, which undergoes
intramolecular Prins-type cyclization to give the product 3a.
In summary, we have developed a novel cascade reaction of
alkynols and 7-oxabenzonorbornadienes driven by the syner-
gistic merger of rhodium and scandium catalysts. The process
provides spirocyclic dihydrobenzo[a]fluorenefurans with ex-
cellent regioselectivity and good yields. The process involves
intramolecular addition of the hydration product of alkynols,
hemiketal-directed C−H activation, dehydrative naphthylation,
and Prins-type cyclization. Experimental studies and DFT
calculations identify C−H bond cleavage as the rate-determining
step, and they indicate that both the transient hemiketal group
M. Acc. Chem. Res. 2002, 35, 695. (e) Anastas, P. T.; Kirchhoff, M. M.
Acc. Chem. Res. 2002, 35, 686. (f) Trost, B. M. Angew. Chem., Int. Ed.
Engl. 1995, 34, 259. (g) Trost, B. M. Science 1991, 254, 1471.
(5) (a) Liu, B.; De Brabander, J. K. Org. Lett. 2006, 8, 4907.
(
(
b) Messerle, B. A.; Vuong, K. Q. Organometallics 2007, 26, 3031.
c) Bender, C. F.; Yoshimoto, F. K.; Paradise, C. L.; De Brabander, J. K.
J. Am. Chem. Soc. 2009, 131, 11350. (d) Wong, C. M.; Vuong, K. Q.;
Gatus, M. R. D.; Hua, C.; Bhadbhade, M.; Messerle, B. A.
Organometallics 2012, 31, 7500. (e) Borghes
Beneteau, V.; Louis, B.; Pale, P. Green Chem. 2013, 15, 1496.
̃
́
6) W catalysis: (a) Barluenga, J.; Dieguez, A.; Rodríguez, F.; Fananas,
̀
e, S.; Drouhin, P.;
́
́
(
́
F. J. Angew. Chem., Int. Ed. 2005, 44, 126. Au catalysis: (b) Wang, P.-S.;
Li, K.-N.; Zhou, X.-L.; Wu, X.; Han, Z.-Y.; Guo, R.; Gong, L.-Z. Chem. -
III
III
and the synergistic Rh /Sc catalysis are key to the selective
dehydrative naphthylation of C−H bonds. This appears to be the
first report of the cascade C−H activation directed by a transient
group, which may open a door for the development of more
cascade reactions involving transient group-directed C−H
activation as highly efficient strategies to construct complicated
structures.
Eur. J. 2013, 19, 6234. (c) Arto, T.; Fan
Chem., Int. Ed. 2016, 55, 7218. Pt catalysis: (d) Barluenga, J.; Mendoza,
A.; Rodríguez, F.; Fananas, F. J. Chem. - Eur. J. 2008, 14, 10892.
e) Galvan, A.; Calleja, J.; Fananas, F. J.; Rodríguez, F. Angew. Chem., Int.
Ed. 2013, 52, 6038.
7) (a) Barluenga, J.; Dieg
Fananas, F. J. Angew. Chem., Int. Ed. 2006, 45, 2091. (b) Barluenga, J.;
Fernandez, A.; Dieguez, A.; Rodríguez, F.; Fananas, F. J. Chem. - Eur. J.
009, 15, 11660. (c) Zhu, C.; Ma, S. Angew. Chem., Int. Ed. 2014, 53,
3532.
8) (a) Barluenga, J.; Calleja, J.; Mendoza, A.; Rodríguez, F.; Fan
̃
́
anas, F. J.; Rodríguez, F. Angew.
̃
́
(
́
̃
́
(
́ ́
uez, A.; Fernandez, A.; Rodríguez, F.;
̃
́
́
́
̃
́
2
1
ASSOCIATED CONTENT
Supporting Information
■
S
(
̃
́
anas,
*
F. J. Chem. - Eur. J. 2010, 16, 7110. (b) Han, Z.-Y.; Chen, D.-F.; Wang,
Y.-Y.; Guo, R.; Wang, P.-S.; Wang, C.; Gong, L.-Z. J. Am. Chem. Soc.
2
012, 134, 6532. (c) Wang, X.; Dong, S.; Yao, Z.; Feng, L.; Daka, P.;
Wang, H.; Xu, Z. Org. Lett. 2014, 16, 22.
̃
́
9) (a) Barluenga, J.; Mendoza, A.; Rodríguez, F.; Fananas, F. J. Angew.
Experimental procedures, characterization data (NMR,
HRMS, etc.), spectra of the products, and DFT data
(
Chem., Int. Ed. 2008, 47, 7044. (b) Wu, H.; He, Y.-P.; Gong, L.-Z. Org.
Lett. 2013, 15, 460.
(
X-ray crystal structures of 3e (CIF)
(10) (a) Li, D. Y.; Shang, X. S.; Chen, G. R.; Liu, P. N. Org. Lett. 2013,
1
5, 3848. (b) Li, D. Y.; Shi, K. J.; Mao, X. F.; Chen, G. R.; Liu, P. N. J. Org.
AUTHOR INFORMATION
Chem. 2014, 79, 4602. (c) Siyang, H. X.; Wu, X. R.; Ji, X. Y.; Wu, X. Y.;
Liu, P. N. Chem. Commun. 2014, 50, 8514. (d) Li, D. Y.; Chen, H. J.; Liu,
P. N. Angew. Chem., Int. Ed. 2016, 55, 373.
■
*
(11) Allen, A. E.; MacMillan, D. W. C. Chem. Sci. 2012, 3, 633.
(12) (a) Skucas, E.; MacMillan, D. W. C. J. Am. Chem. Soc. 2012, 134,
Notes
9
090. (b) Stevens, J. M.; MacMillan, D. W. C. J. Am. Chem. Soc. 2013,
The authors declare no competing financial interest.
1
35, 11756.
(
13) Wu, X.; Zhao, Y.; Ge, H. J. Am. Chem. Soc. 2015, 137, 4924.
(14) (a) Uraguchi, D.; Kinoshita, N.; Kizu, T.; Ooi, T. J. Am. Chem. Soc.
015, 137, 13768. (b) Jeffrey, J. L.; Petronijevic, F. R.; MacMillan, D. W.
ACKNOWLEDGMENTS
This research was supported by the National Natural Science
Foundation of China (Project Nos. 21421004, 21372072,
■
2
́
C. J. Am. Chem. Soc. 2015, 137, 8404. (c) Cuthbertson, J. D.; MacMillan,
D. W. C. Nature 2015, 519, 74.
2
1190033, 21561162003, and 21602059), the Eastern Scholar
(15) (a) Lautens, M.; Fagnou, K.; Hiebert, S. Acc. Chem. Res. 2003, 36,
Distinguished Professor Program, the Postdoctoral Fund in
China Postdoctoral Science Foundation (2015M581542 and
4
8. (b) Qi, Z.; Li, X. Angew. Chem., Int. Ed. 2013, 52, 8995. (c) Kong, L.;
Yu, S.; Tang, G.; Wang, H.; Zhou, X.; Li, X. Org. Lett. 2016, 18, 3802.
(d) Gandeepan, P.; Rajamalli, P.; Cheng, C.-H. Angew. Chem., Int. Ed.
2016, 55, 4308.
2
016T90341), the Programme of Introducing Talents of
Discipline to Universities (B16017), and the Fundamental
Research Funds for the Central Universities.
(16) (a) Morimoto, K.; Hirano, K.; Satoh, T.; Miura, M. J. Org. Chem.
2
011, 76, 9548. (b) Nakanowatari, S.; Ackermann, L. Chem. - Eur. J.
2
014, 20, 5409.
REFERENCES
■
(
17) (a) Yu, S.; Liu, S.; Lan, Y.; Wan, B.; Li, X. J. Am. Chem. Soc. 2015,
37, 1623. (b) Yang, Y.-F.; Houk, K. N.; Wu, Y.-D. J. Am. Chem. Soc.
016, 138, 6861.
(
1) (a) Song, G.; Wang, F.; Li, X. Chem. Soc. Rev. 2012, 41, 3651.
b) Zhang, F.; Spring, D. R. Chem. Soc. Rev. 2014, 43, 6906. (c) Gensch,
T.; Hopkinson, M. N.; Glorius, F.; Wencel-Delord, J. Chem. Soc. Rev.
016, 45, 2900.
2) (a) Jun, C.-H.; Lee, H.; Hong, J.-B. J. Org. Chem. 1997, 62, 1200.
b) Mo, F.; Dong, G. Science 2014, 345, 68. (c) Wang, Z.; Reinus, B. J.;
1
(
2
2
(
(
Dong, G. Chem. Commun. 2014, 50, 5230. (d) Mo, F.; Lim, H. N.; Dong,
G. J. Am. Chem. Soc. 2015, 137, 15518. (e) Lewis, L. N.; Smith, J. F. J. Am.
D
Org. Lett. XXXX, XXX, XXX−XXX