Angewandte Chemie International Edition
10.1002/anie.202003829
RESEARCH ARTICLE
[
1]
For comprehensive reviews on the isolation, identification, and
syntheses of the securinega alkaloids see: a) R. Wehlauch, K.
Gademann, Asian J. Org. Chem. 2017, 6, 1146–1159; b) E. Chirkin, W.
Atkatlian, F.-H. Poreꢀ, in The Alkaloids. Chemistry and Biology (Ed.: H.-
J. Knꢁlker), Academic Press, London, 2015; pp. 1−120; c) S. M. Weinreb,
Nat. Prod. Rep. 2009, 26, 758–775.
[19] Sun, X.; Worthy, A. D.; Tan, K. L. Angew Chem. 2011, 123, 8317–8321;
Angew. Chem. Int. Ed. 2011, 50, 8167–8171.
[20] K. C. Nicolaou, Q. Cai, B. Qin, M. T. Petersen, R. Mikkelsen, P. Heretsch,
Angew. Chem. 2015, 127, 3117–3121; Angew. Chem. Int. Ed. 2015, 54,
3074–3078.
[21] a) H. E. Zimmerman, M. D. Traxler, J. Am. Chem. Soc. 1957, 79, 1920–
1923; b) D. A. Evans, Aldrichimica Acta 1982, 15, 23–32.
[
[
2]
3]
For examples of dimeric, trimeric, tetrameric, and pentameric securinega
alkaloids see: a) J. Park, S. Jeon, G. Kang, J. Lee, M-H. Baik, S. Han J.
Org. Chem. 2019, 84, 1398–1406; b) S. Jeon, S. Han J. Am. Chem. Soc.
[22] A screen of oxidants revealed that PIDA was the most effective oxidant;
the originally reported conditions of 1 equivalent of lead tetraacetate at
2
017, 139, 6302–6305 and references therein.
0 °C in DCM solvent (Ref. 16a) only lead to trace product. Full
a) J.-H. Chen, S. R. Levine, J. F. Buergler, T. C. McMahon, M. R.
Medeiros, J. L. Wood, Org. Lett. 2012, 14, 4531–4533; b) M. R. Medeiros,
J. L. Wood, Tetrahedron 2010, 66, 4701–4709.
optimization conditions can be found in the Supporting Information.
[23] S. Moulay, Chem. Educ. Res. Pract. Eur. 2002, 3, 33–64.
[24] Coffen, D. L.; Katonak, D. A. Helv. Chim. Acta 1981, 64, 1645.
[25] H. R. Kim, S. I. Shin, H. J. Park, D. J. Jeon, E. K. Ryu, Synlett 1998, 7,
789–791.
[
[
4]
5]
J. Parello, S. Munavalli, Compt. Rend. 1965, 260, 337–340
Z. Horii, T. Imanishi, M. Yamauchi, M. Hanaoka, J. Parello, S. Munavalli,
Tetrahedron Lett. 1972, 19, 1877–1880.
[26] See the Supporting Information for further details.
[
[
6]
7]
N. H. Lajis, O. B. Guan, M. V. Sargent, B. W. Skelton, A. H. White Aust.
J. Chem. 1992, 45, 1893–1897.
[27] a) K. Tani, B. M. Stoltz, Nature, 2006, 441, 731–734. b) M. Liniger, D. G.
VanderVelde, M. K. Takase, M. Shahgholi, B. M. Stoltz, J. Am. Chem.
Soc. 2016, 138, 969–974.
L. S. Moraes, M. R. Donza, A. P. Rodrigues, B. J. Silva, D. S. Brasil, M.
Zoghbi, E. H. Andrade, G. M. Guilhon, E. O. Silva, Molecules 2015, 20,
[28] The rapid hydrolysis of the trifluoroacetate variant of 32 precludes
formation of 35 through such a pathway, as the trifluoroacetate moiety is
lost prior to engagement of the tertiary alcohol.
2
2157–22169.
[
[
[
8]
9]
K. J. Park, C. S. Kim, Z. Khan, J. Oh, S. Y. Kim, S. U. Choi, K. R. Lee, J.
Nat. Prod. 2019, 82, 1345–1353.
[29] a) J. M. Risley, R. L. Van Etten J. Am. Chem. Soc. 1979, 101, 252–253.
b) J. R. Everett Org. Magn. Reson. 1982, 19, 86–88.
Z.- L. Wu, X.- J. Huang, M.-T. Xu, X. Ma, L. Li, L. Shi, W.- J. Wang, R.-
W. Jiang, W.- C. Ye, Y. Wang, Org. Lett. 2018, 20, 7703–7707.
[30] Heating of the neat reaction mixture (H218O solvent) was attempted, but
required heating to 50 °C before minor amounts of 37 were detected by
10] Virosaine A: a) H. Miyatake-Ondozabal, L. M. Bannwart, K. Gademann
Chem. Commun. 2013, 49, 1921–1923; b) J. M. E. Hughes, J. L. Gleason,
Angew. Chem. 2017, 129, 10970–10974; Angew. Chem. Int. Ed. 2017,
TLC analysis (60% EtOAc/hexanes, R
conditions ultimately led to decomposition of 36 prior to expansion. THF
and CH CN were also used as co-solvents, however, heating was also
f = 0.44, FeCl3 stain). These
5
6, 10830–10834; Virosaine B: c) H. Wei, C. Qiao, G. Liu, Z. Yang,
Angew. Chem. 2013, 125, 648–652; Angew. Chem. Int. Ed. 2013, 52,
20–624; Flueggine A: d) N. Ma, Y. Yao, B-X. Zhao, Y. Wang, W.-C. Ye,
3
required leading to substantial decomposition of 36 without any
significant expansion to 37. Thus, methanol was an essential component
for the use of hydroxide bases.
6
Chem. Commun. 2014, 50, 9284–9287; and reference 10c.
11] C. A. Carson, M. A. Kerr, Angew. Chem. 2006, 118, 6710–6713; Angew.
Chem. Int. Ed. 2006, 45, 6560–6563.
[
[
[31] In order to consider the possibility of a radical-mediated mechanism, the
expansion of 36 to 37 was conducted in the presence of TEMPO.26 No
additional intermediates were observed and these conditions afforded 37
as the sole product.
12] a) M. Berthet, T. Cheviet, G. Dujardin, I. Parrot, J. Martinez, Chem. Rev.
2
016, 116, 15235–15283, and references therein; b) A. Y. Hong, C. D.
Vanderwal, J. Am. Chem. Soc. 2015, 137, 7306–7309.
[32] a) J. Ho, A. Klamt, M. L. Coote, J. Phys. Chem. A, 2010, 114, 13442–
13444; b) J. Tomasi, B. Mennucci, R. Cammi Chem. Rev. 2005, 105,
2999–3093; c) A. V. Marenich, R. M. Olson; A. C. Chamberlin, C. J.
Cramer, D. G. Truhlar J. Chem. Theory Comput. 2007, 3, 2055–2067.
[33] These attempts primarily resulted in -elimination of the tertiary alcohol
accompanied by complex mixtures of decomposition products.
[34] C. Laurence, J.-F. Gal, in Lewis Basicity and Affinity Scales: Data and
Measurement, John Wiley & Sons, Chichester, 2010; pp. 1−447.
[35] a) K. J. Msayib, C. I. F. Watt, Chem Soc. Rev. 1992, 21, 237–243; b) A.
Bagno, G. Scorrano J. Chem. Soc. Perkin Trans. 2 1990, 1017–1027. c)
J. H. Exner, E. C. Steiner, J. Am. Chem. Soc. 1974, 96, 1782–1787.
[36] a) J. M. Gruver, L. R. Liou, A. J. McNeil, A. Ramirez, D. B. Collum, J. Org.
Chem. 2008,73, 7743–7747; b) C. A. Brown, J. Chem. Soc., Chem.
Commun. 1974, 680–681 and references therein; c) H. J. Reich J. Org.
Chem. 2012, 77, 5471–5491 and references therein; d) H. J. Reich.; W.
H. Sikorski J. Org. Chem. 1999, 64, 14–15.
[
[
13] For methods to construct tetrahydro-1,2-oxazines see: a) I. S. Young, M.
A. Kerr, Angew. Chem. 2003, 115, 3131–3134; Angew. Chem. Int. Ed.
2
003, 42, 3023–3026; b) I. S. Young, M. A. Kerr Org. Lett. 2004, 6, 139–
41; c) M. D. Ganton, M. A. Kerr, J. Org. Chem. 2004, 69, 8554–8557;
1
d) K. Sapeta, M. A. Kerr, J. Org. Chem. 2007, 72, 8597–8599.
14] For examples of: reduction of hydroxamic acids to nitrones, see: a)
S. Katahara, S. Kobayashi, K. Fujita, T. Matsumoto, T. Sato, N. Chida, J.
Am. Chem. Soc. 2016, 138, 5246–5249; selective reduction to
hydroxylamines, see: b) C. L. Bailey, A. Y. Joh, Z. Q. Hurley, C. L.
Anderson, B. Singaram, J. Org. Chem. 2016, 81, 3619–3628; c) B. M.
Coleridge, T. P. Angert, L. R. Marks, P. N. Hamilton, C. P. Sutton, K.
Matos, E. R. Burkhardt, Tetrahedron Lett. 2010, 51, 5973–5976; d) G.
Godjoian, B. Singaram, Tetrahedron Lett. 1997, 38, 1717–1720; e) Van
P. A. Elburg, D. N. Reinhoudt, Heterocycles 1987, 26, 437–455; other
reactions, see: f) S. Pichette, S. Aubert-Nicol, J. Lessard, C. Spino, J.
Org. Chem. 2012, 77, 11216–11226; g) G. E. Keck, T. T. Wager, S. F.
McHardy, S. F. Tetrahedron, 1999, 55,11755–11772.
[37] a) K. B. Wiberg J. Comput. Chem. 2004, 25, 1342–1346; b) J. Tirado-
Rives, W. L. Jorgensen, J. Chem. Theory Comput. 2008, 4, 297–306; c)
A. F. Rodrigues-Oliveira, F. W. M. Ribeiro, G. Cervi, T. C. Correra ACS
Omega 2018, 3, 9075-9085.
[
[
15] a) P. Trapencieris, J. Strazdina, P. Bertrand, Chem. Heterocycl. Comp.
2
012, 48, 833–835; b) J. B. Bapat, D. C. Black, R. F. C. Brown, Adv. in
Heterocycl. Chem. 1969, 10, 199–240. c) The chemistry of
hydroxylamines, oximes and hydroxamic acids (Eds.: Z. Rappoport, J. F.
Liebman), John Wiley and Sons: Chichester, 2009.
[38] G. R. Krow, Org. React. (Hoboken, NJ, U. S.) 1993, 43, 251–798.
[39] J. Meinwald, E. Frauenglass, J. Am. Chem. Soc. 1960, 82, 5235–5239.
[40] a) G. Buchbauer, J. Gabmeier, E. Haslinger, W. Robien, H. Steindl, Helv.
Chim. Acta. 1985, 68, 231-235; b) H. Duddeck, M. Kaiser, Z. Naturforsch.
B, 1982, 37b, 1672–1674.
16] a) M. B. Hadimani, R. Mukherjee, R. Banerjee, M. E. Shoman, O. M. Aly,
S. B. King, Tetrahedron Lett. 2015, 56, 5870–5873; b) X. Sha, T. S.
Isabell, R. P. Patel, C. S. Day, S. B. King, J. Am. Chem. Soc. 2006, 128,
[41] a) S. Wang, X. Zhao, D. Zhang-Negrerie, Y. Du Org. Chem. Front. 2019,
6, 347–351; b) A. Tabolin, S. L. Loffe, Chem. Rev. 2014, 114, 5426–5476.
[42] P. A. Van Elburg, D. N. Reinhoudt, Heterocycles 1987, 26, 437–445.
9
687–9692.
17] Wiberg, K. B. Angew. Chem. 1986, 98, 312–322; Angew. Chem. Int. Ed.
986, 25, 312–322.
18] M. Renz, B. Meunier, Eur. J. Org. Chem. 1999, 737–750.
[
[
1
This article is protected by copyright. All rights reserved.