PHYSICOCHEMICAL STUDY OF SOME THIOBARBITURATE DERIVATIVES
1995
in decreasing order are given as MKA25 > MKA28 >
MKA29 > MKA27 > MKA26. Molar absorptivity coef-
ficient for selected free thiobarbiturates and thiobarbi-
turates–DNA complex were calculated. For free thio-
barbiturates molar absorptivity coefficient occurs in the
5. S. C. Flagg, C. B. Martin, C. Y. Taabazuing,
B. E. Holmes, and M. J. Knapp, J. Inorg. Biochem.
1
13, 25 (2012).
6. S. Spiro, M. Rooker, and M. Blutstein, Anesth. Prog.
22, 78 (1975).
1
3
–1 –1
‒1
range of 6.47 × 10 –1.84 × 10 [(mol L ) cm ],
while for thiobarbiturates–DNA complex it was in the
7. T. Majumder, B. De, B. B. Goswami, and S. Kar, Der.
Pharma. Chem. 3, 268 (2011).
1
3
range of 8.63 × 10 –1.290 × 10 . The change in molar
absorptivity values are the indication of thiobarbitu-
rates–DNA interactions. When we added the DNA
solution of different concentration to solutions of
compound MKA29, it showed decrease in absorbance
as well as in maximum wavelength. Samples MKA27
and MKA28 showed decrease in absorption maxi-
mum. Similarly, MKA25, MKA26, and MKA29
showed hyperchromisim which reflect that the con-
formational changes occurred in rings of DNA. All
this spectroscopic response and behavior reflects that
interactions of selected thiobariturates occurred with
dsDNA. The binding constants and strength of DNA
with thiobarbiturates was find out by using Benesi–
8. M. Usman and M. Siddiq, J. Chem. Thermodyn. 58,
359 (2013).
9. J. M. Mcgrath and M. D. Pluth, J. Org. Chem. 79, 711
(2014).
1
0. M. H. Al-Sayah, R. Mcdonald, and N. R. Branda, Eur.
J. Org. Chem. 2004, 173 (2004).
1
1. R. Kitamura, M. Kakuyama, K. Nakamura, I. Miya-
waki, and K. Mori, Braz. J. Anaesth. 77, 503 (1996).
1
2. G. C. Shaw and A. Fulco, J. Biol. Chem. 268, 2997
1993).
3. J. L. Adcock, P. S. Francis, T. A. Smith, and N. W. Bar-
nett, Analyst 133, 49 (2008).
(
1
1
4. K. M. Khan, M. Khan, A. Ahmad, A. Irshad, S. Kar-
dono, L. Broto, F. Rahim, S. M. Haider, S. Ahmed,
and S. Parveen, J. Chem. Soc. Pakistan 36, 1153 (2014).
Hildebrand equation. The binding constants K was
b
1
calculated, which was in the range of 8.63 × 10 –
1
5. Z. M. Zaki and G. G. Mohamed, Spectrochim. Acta, A
6, 1245 (2000).
6. S. Sadeek and M. Refat, J. Korean Chem. 50, 107
2006).
3
–1 –1
1
.290 × 10 (mol L ) . It is concluded that change in
5
various physicochemical properties and strength of
interaction with DNA of different sample is attributed
to the change in the chemical structure of the com-
pounds.
1
(
1
7. A. F. O. Santos, J. I. Basilio, F. D. Souza, A. Medeiros,
M. F. Pinto, D. De-Santana, and R. Macedo,
J. Therm. Anal. Calorim. 93, 361 (2008).
REFERENCES
. M. M. Islam, S. Fujii, S. Sato, T. Okauchi, and S. Tak-
enaka, Bioorg. Med. Chem. 23, 4769 (2015).
. M. S. Refat, S. A. El-Korashy and A. S. Ahmed, Spec-
trochim. Acta Mol. Biomol. Spectrosc. 71, 1084
18. F. Javed, A. A. Altaf, A. Badshah, M. N. Tahir, M. Sid-
diq, Z. U. Rehman, A. Shah, S. Ullah, and B. Lal,
J. Coord. Chem. 65, 969 (2012).
1
1
9. A. Shah, R. Qureshi, N. K. Janjua, S. Haque, and
2
S. Ahmad, Anal. Sci. 24, 1437 (2008).
(2008).
20. M. M. Crowley, F. Zhang, M. A. Repka, S. Thumma,
S. B. Upadhye, S. K. Battu, J. W. Mcginity, and
C. Martin, Drug. Dev. Ind. Pharm. 33, 909 (2007).
3
. E. R. Garrett, J. T. Bojarski, and G. J. Yakatan,
J. Pharm. Sci. 60, 1145 (1971).
4
. N. N. Pesyan, M. Jalilzadeh, N. Y. Torkaman, and 21. N. R. Yaffe, A. Almond, and E. W. Blanch, J. Am.
E. Sahin, J. Iran. Chem. Soc. 11, 35 (2014). Chem. Soc. 132, 10654 (2010).
RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A Vol. 92 No. 10 2018