Page 3 of 5
Journal of the American Chemical Society
tein Sꢀpersulfidation levels and decreased enzyme activity
compared with untreated groups. Meanwhile, H S alone
failed to affect enzyme activity. GAPDH activity also showed
a concentration dependent decrease in response to 301 with
a half inhibition concentration of approximately 1 μM (Figꢀ
ure 3E). Maximal inhibition was achieved with 5 μM of the
AUTHOR INFORMATION
Author Contributions
1
2
3
4
5
6
7
8
9
2
#
These authors contributed equally and the names are listed
alphabetically.
Corresponding Author
3
01 with 17 ± 1% catalytic activity remaining. Further
A
Sulfhydration Induction
, BW-HP-301
2, Na
1
Protein Sulfhydration detection
by a tag-switch assay
GAPDH
SH
2 2
S
ACKNOWLEDGMENT
3
, H
,Na
, No treatment
2 2 2
O + Na S
GAPDH activity assay
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
Partial financial support from the GSU Brains and Behavꢀ
iors Fellowship Program to BY is gratefully acknowledged.
4
5
2
S
REFERENCES
(1)Blackstone, E.; Morrison, M.; Roth, M. B. Science 2005, 308,
18.
5
(
2)Szabo, C. Nat. Rev. Drug. Discov. 2007, 6, 917.
(3)Wallace, J. L.; Wang, R. Nat. Rev. Drug. Discov. 2015, 14,
329.
(4)Benavides, G. A.; Squadrito, G. L.; Mills, R. W.; Patel, H. D.;
Isbell, T. S.; Patel, R. P.; DarleyꢀUsmar, V. M.; Doeller, J. E.; Kraus,
D. W. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 17977.
(5)Kondo, K.; Bhushan, S.; King, A. L.; Prabhu, S. D.; Hamid, T.;
Koenig, S.; Murohara, T.; Predmore, B. L.; Gojon, G., Sr.; Gojon, G.,
Jr.; Wang, R.; Karusula, N.; Nicholson, C. K.; Calvert, J. W.; Lefer,
D. J. Circulation 2013, 127, 1116.
(6)Wallace, J. L. Trends Pharmacol. Sci. 2007, 28, 501.
(7)Yang, G.; Wu, L.; Jiang, B.; Yang, W.; Qi, J.; Cao, K.; Meng,
Q.; Mustafa, A. K.; Mu, W.; Zhang, S.; Snyder, S. H.; Wang, R.
Science 2008, 322, 587.
(8)Zheng, Y.; Yu, B.; De La Cruz, L. K.; Roy Choudhury, M.;
Anifowose, A.; Wang, B. Med. Res. Rev. 2018, DOI:
1
0.1002/med.21433.
(9)Zheng, Y.; Ji, X.; Ji, K.; Wang, B. Acta. Pharm. Sin. B 2015, 5,
Figure 3, A: Work flow of GAPDH Sꢀpersulfidation process; B and C:
GAPDH Sꢀpersulfidation level assay. GAPDH (2 mg/mL) was subjected to
different treatments and analyzed by the protein Sꢀpersulfidation switch tag
assay; D: GADPH activity assay; All groups have 10 units/mL PLE and 2%
367.
(10)Szabo, C. Nat. Rev. Drug. Discov. 2016, 15, 185.
11)Yadav, P. K.; Martinov, M.; Vitvitsky, V.; Seravalli, J.;
Wedmann, R.; Filipovic, M. R.; Banerjee, R. J. Am. Chem. Soc.
(
2 2 2 2 2
DMSO. (1) 100 ꢁM 301; (2) 100 ꢁM Na S ; (3) 100 ꢁM H O + 100 ꢁM Na S;
(
4) 200 ꢁM Na S; (5) PLE alone; GADPH was subjected to various treatment
2
2
016, 138, 289.
at 37 ℃for 0.5 h, then its Sꢀpersulfidation level and activity was determined.
E: Concentration dependent inhibition of GAPDH activity by 301. 2 μg/mL
GAPDH was incubated with various concentration of 301 at 37 ℃ for 0.5 h
with 10 units/ mL PLE, after which the enzyme activity was determined.
Then each group was incubated with 2 mM DTT at r.t. for 2 h, after which the
GAPDH activity was measured. Values are means ± SEM. n = 3, **P < 0.01.
(12)Mishanina, T. V.; Libiad, M.; Banerjee, R. Nat. Chem. Biol.
015, 11, 457.
2
(
13)Kimura, H. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 2015,
91, 131.
(14)Koike, S.; Ogasawara, Y.; Shibuya, N.; Kimura, H.; Ishii, K.
FEBS Lett. 2013, 587, 3548.
15)Greiner, R.; Palinkas, Z.; Basell, K.; Becher, D.; Antelmann,
increase in prodrug concentration to 10 μM did not decrease
the enzyme activity further. After treatment with 301,
GAPDH was treated with 2 mM DTT at r.t. for 2 h, which
would reduce the Sꢀpersulfidation product to free the thiol
group again. Indeed, enzyme activity was restored to 75ꢀ
(
H.; Nagy, P.; Dick, T. P. Antioxid. Redox Signal. 2013, 19, 1749.
(16)Kimura, Y.; Mikami, Y.; Osumi, K.; Tsugane, M.; Oka, J.;
Kimura, H. FASEB J. 2013, 27, 2451.
(17)Mustafa, A. K.; Gadalla, M. M.; Sen, N.; Kim, S.; Mu, W.;
Gazi, S. K.; Barrow, R. K.; Yang, G.; Wang, R.; Snyder, S. H. Sci.
Signal. 2009, 2, ra72.
9
5% of its original activity by DTT treatment. Considering
51,52
the important roles of GAPDH,
the above results suggest
(
18)Paul, B. D.; Snyder, S. H. Nat. Rev. Mol. Cell Biol. 2012, 13,
99.
19)Sen, N.; Paul, B. D.; Gadalla, M. M.; Mustafa, A. K.; Sen, T.;
an important role for H
tion and redox balance.
2
S
2
in energy metabolism, proliferaꢀ
4
(
In conclusion, we provide a general strategy to H
2
S
2
proꢀ
Xu, R.; Kim, S.; Snyder, S. H. Mol. Cell 2012, 45, 13.
(20)Krishnan, N.; Fu, C.; Pappin, D. J.; Tonks, N. K. Sci. Signal.
2011, 4, ra86.
drugs with wellꢀdefined release mechanism. Secondly, conꢀ
trollable release patterns and tunable release rates have
(21)Vandiver, M. S.; Paul, B. D.; Xu, R.; Karuppagounder, S.;
been achieved. Such a H
tein Sꢀpersulfidation, leading to significant enzyme activity
changes. This novel series of H prodrugs should be imꢀ
2 2
S donor can directly induce proꢀ
Rao, F.; Snowman, A. M.; Ko, H. S.; Lee, Y. I.; Dawson, V. L.;
Dawson, T. M.; Sen, N.; Snyder, S. H. Nat. Commun. 2013, 4, 1626.
2 2
S
(22)Yang, G.; Zhao, K.; Ju, Y.; Mani, S.; Cao, Q.; Puukila, S.;
portant research tools for future studies.
Khaper, N.; Wu, L.; Wang, R. Antioxid. Redox Signal. 2012, 18,
1906.
(23)Jarosz, A. P.; Wei, W.; Gauld, J. W.; Auld, J.; Ozcan, F.;
ASSOCIATED CONTENT
Aslan, M.; Mutus, B. Free Radic. Biol. Med. 2015, 89, 512.
Supporting Information
(
24)Nagy, P.; Winterbourn, C. C. Chem. Res. Toxicol. 2010, 23,
1
541.
Experiment details and supplementary figures and table
3
ACS Paragon Plus Environment