The Journal of Physical Chemistry A
Article
(9) Rossi, M. J.; Golden, D. M. Laser-Induced Kinetics: Arrhenius
Parameters for t-C4H9 + XI ⇆ i-C4H9X + I (X = H, D) and the Heat
of Formation of the t-Butyl Radical. Int. J. Chem. Kinet. 1983, 15,
1283−1300.
kinetic results enabled a thermochemical evaluation of the
standard enthalpy of formation of t-butyl free radical based on
the “Third Law” approach, which led to the following preferred
•
value: ΔfH2°98(t-C4H9 ) = 44.3
1.7 kJ mol−1 using S2°98(t-
•
(10) Seetula, J. A.; Russell, J. J.; Gutman, D. Kinetics and
Thermochemistry of the Reactions of Alkyl Radicals (CH3, C2H5, i-
C3H7, s-C4H9 and t-C4H9) with HI: A Reconciliation of the Alkyl
Radical Heats of Formation. J. Am. Chem. Soc. 1990, 112, 1347−1353.
C4H9 ) = 322.2 J K−1 mol−1. In view of the tenacious and
persistent disagreement with the results of some other
experiments resulting in very different chemical kinetics, we
forego at this time a recommended value in favor of a preferred
(11) Muller-Markgraf, W.; Rossi, M. J.; Golden, D. M. Rate
̈
•
value of ΔfH2°98(t-C4H9 ).
Constants for the Reaction t-C4H9 + DX → i-C4H9D + X (X = Br,
I), 295 < T (K) < 384: Heat of Formation of the tert-Butyl Radical. J.
Am. Chem. Soc. 1989, 111, 956−962.
ASSOCIATED CONTENT
■
(12) Pacansky, J.; Chang, J. S. Infrared matrix isolation studies on the
t-butyl radical. J. Chem. Phys. 1981, 74, 5539−5546.
S
* Supporting Information
Detailed experimental conditions for reactions 1 and 2. This
material is available free of charge via the Internet at http://
(13) Pacansky, J.; Yoshimine, M. J. Theoretical Studies on the
Barriers for internal Rotation of the Methyl Groups in the tert-Butyl
Radical. J. Phys. Chem. 1986, 90, 1980−1983.
(14) Benson, S. W.; Kondo, O.; Marshall, R. M. Absolute Rate
Constants for the Reaction of Br Atoms with i-C4H10. Int. J. Chem.
Kinet. 1987, 19, 829−839.
(15) Bracey, J.; Walsh, R. Unpublished results on the kinetics of I + i-
C4H10, cited and used in refs 9 and 10, 1983.
AUTHOR INFORMATION
■
Notes
The authors declare no competing financial interest.
(16) Rossi, M. J.; Golden, D. M. The Absolute Rate Constant for the
Metathesis t-C4H9 + DI → i-C4H9D + I and the Heat of Formation of
the t-Butyl Radical. Int. J. Chem. Kinet. 1979, 11, 969−976.
(17) Teranishi, H.; Benson, S. W. The Kinetics of Dehydrogenation
of Isobutane by Iodine and the Heat of Formation of the t-Butyl
Radical. J. Am. Chem. Soc. 1963, 85, 2887−2890.
ACKNOWLEDGMENTS
■
Generous support by the Swiss State Secretariat for Education,
Research and Innovation (SERI) through Contract No. SBF
Nr. C11.0052 in the framework of COST project CM0901
(Detailed Chemical Kinetic Models for Cleaner Combustion) is
gratefully acknowledged. We enjoyed substantial and insightful
discussions with John Barker and David Golden on our favorite
subject. We also would like to sincerely thank our Italian master
craftsman Mr. Flavio Comino for whom no challenge is large
enough regarding the construction of the experimental
apparatus.
(18) Knox, J. H.; Musgrave, R. H. Iodination of Alkanes: Ethane,
Propane and Isobutane. Trans. Faraday Soc. 1967, 63, 2201−2216.
(19) Gutman, D. The Controversial Heat of Formation of the t-
•
C4H9 Radical and the Tertiary C-H Bond Energy. Acc. Chem. Res.
1990, 23, 375−380.
(20) Houle, F. A.; Beauchamp, J. L. Photoelectron Spectroscopy of
Methyl, Ethyl, Isopropyl, and tert-Butyl Radicals. Implications for the
Thermochemistry and Structures of the Radicals and Their
Corresponding Carbonium Ions. J. Am. Chem. Soc. 1979, 101,
4067−4074.
REFERENCES
■
(1) Leplat, N.; Wokaun, A.; Rossi, M. J. Reinvestigation of the
(21) Schultz, J. C.; Houle, F. A.; Beauchamp, J. L. Photoelectron
Spectroscopy of 1-Propyl, 1-Butyl, Isobutyl, Neopentyl, and 2-Butyl
Radicals: Free Radical Precursors to High-Energy Carbonium Ion
Isomers. J. Am. Chem. Soc. 1984, 106, 3917−3927.
(22) Castelhano, A. L.; Griller, D. Heats of Formation of Some
Simple Alkyl Radicals. J. Am. Chem. Soc. 1982, 104, 3655−3659.
(23) Tsang, W. The Stability of Alkyl Radicals. J. Am. Chem. Soc.
1985, 107, 2872−2880.
•
Elementary Chemical Kinetics of the Reaction C2H5 + HBr (HI) →
C2H6 + Br• (I•) in the Range 293−623 K and Its Implication on the
•
Thermochemical Parameters of C2H5 Free Radical. J. Phys. Chem. A
2013, 117, 11383−11402.
(2) Leplat, N.; Rossi, M. J. The Measurement of the Rate Parameters
•
•
for the Reactions i-C3H7 and n-C3H7 + HI → C3H8 + I• over the
Temperature Range 293 − 623 K: Implications for the Standard Heat
of Formation of the Propyl Radicals. Int. J. Chem. Kinet. 2014, 46,
305−320, DOI: 10.1002/kin.20832.
(24) Tsang, W. Heat of Formation of Organic Free Radicals by
Kinetic Methods. In Energetics of Organic Free Radicals; Martinho
Simoes, J. A., Greenberg, A., Liebman, J. F., Eds.; Chapman & Hall:
London, 1996; pp 22−58.
(3) Russell, J. J.; Seetula, J. A.; Timonen, R. S.; Gutman, D.; Nava, D.
F. Kinetics and Thermochemistry of t-C4H9 Radical. Study of the
Equilibrium t-C4H9 + HBr ⇆ i-C4H10 + Br. J. Am. Chem. Soc. 1988,
110, 3084−3091.
(4) Richards, P. D.; Ryther, R. J.; Weitz, E. Diode Laser Probes of
tert-Butyl Radical Reaction Kinetics: Reaction of C(CH3)3• with HBr,
DBr, and HI. J. Phys. Chem. 1990, 94, 3663−3667.
(5) Nicovich, J. M.; van Dijk, C. A.; Kreutter, K. D.; Wine, P. H.
Kinetics of the Reactions of Alkyl Radicals with HBr. J. Phys. Chem.
1991, 95, 9890−9896.
(6) Seakins, P. W.; Pilling, M. J. Laser Flash Photolysis Study of the
Br + i-C4H10 ⇆ HBr + t-C4H9 Reactions. Heat of Formation of t-
C4H9. J. Phys. Chem. 1991, 95, 9874−9878.
(7) Seakins, P. W.; Pilling, M. J.; Niiranen, J. T.; Gutman, D.;
Krasnoperov, L. N. Kinetics and Thermochemistry of R + HBr ⇆ R-H
+ Br Reactions: Determinations of the Heat of Formation of C2H5, i-
C3H7, sec-C4H9 and t-C4H9. J. Phys. Chem. 1992, 96, 9847−9855.
(8) Seetula, J. A.; Slagle, I. R. Kinetics and Thermochemistry of the R
+ HBr ⇆ RH + Br (R = n-C3H7, i-C3H7, n-C4H9, i-C4H9, sec-C4H9 or
t-C4H9) Equilibrium. J. Chem. Soc., Faraday Trans. 1997, 93 (9),
1709−1719.
́ ́
(25) Kiraly, Z.; Kortvelyesi, T.; Seres, L. Thermal Reaction of 2-
̈
methyl-2-butene in the Presence of Azomethane: Enthalpy of
•
Formation of the Radicals (CH3)2C•CH(CH3)2 and tert-C4H9 .
Phys. Chem. Chem. Phys. 2000, 2, 349−354.
(26) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Stefanov, B. B.
Assessment of Complete Basis Set Methods for Calculation of
Enthalpies of Formation. J. Chem. Phys. 1998, 108, 692−697.
(27) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Rassolov, V.;
Pople, J. A. Gaussian-3 (G3) Theory for Molecules Containing First
and Second-Row Atoms. J. Chem. Phys. 1998, 109, 7764−7776.
(28) Smith, B. J.; Radom, L. Heat of Formation of the tert-Butyl
Radical. J. Phys. Chem. A 1998, 102, 10787−10790.
(29) Marsi, I.; Viskolcz, B.; Seres, L. Application of the Group
Additivity Method to Alkyl Radicals: An ab Initio Study. J. Phys. Chem.
A 2000, 104, 4497−4504.
(30) Janoschek, R.; Rossi, M. J. Thermochemical Properties of Free
Radicals from G3MP2B3 Calculations. Int. J. Chem. Kinet. 2002, 34,
550−560.
M
dx.doi.org/10.1021/jp500724r | J. Phys. Chem. A XXXX, XXX, XXX−XXX