C O M M U N I C A T I O N S
Table 1. Phosphine-Catalyzed Cycloisomerization of Bis(enones)a
In summary, we have developed a simple and effective organic
catalyst system for the cycloisomerization of bis(enones). This
methodology overcomes many limitations of metallic diene cy-
cloisomerization catalysts: both five- and six-membered-ring
formations occur readily, conformationally predisposed substrates
are not required, products of alkene isomerization are not formed,
and finally, functional group compatibility is broadened. An
enantioselective variant of the phosphine-catalyzed cycloisomer-
ization of bis(enones) will be the subject of a forthcoming report.
Acknowledgment. The authors acknowledge the Robert A.
Welch Foundation (F-1466), the NSF-CAREER program, the
Herman Frasch Foundation, the NIH (RO1 GM65149-01), the
THECB Advanced Research Program and donors of The Petroleum
Research Fund administered by the ACS for partial support of this
research.
Supporting Information Available: Spectral data for all new
compounds (1H NMR, 13C NMR, IR, HRMS) (PDF). This material is
References
(1) (a) Stork, G.; Rosen, P.; Goldman, N. L. J. Am. Chem. Soc. 1961, 83,
2965. (b) Stork, G.; Rosen, P.; Goldman, N.; Coombs, R. V.; Tsuji, J. J.
Am. Chem. Soc. 1965, 87, 275.
(2) For reductive aldol processes, see: (a) Revis, A.; Hilty, T. K. Tetrahedron
Lett. 1987, 28, 4809. (b) Matsuda, I.; Takahashi, K.; Sata, S. Tetrahedron
Lett. 1990, 31, 5331. (c) Kiyooka, S.; Shimizu, A.; Torii, S. Tetrahedron
Lett. 1998, 39, 5237. (d) Isayama, S.; Mukaiyama, T. Chem. Lett. 1989,
2005. (e) Taylor, S. J.; Morken, J. P. J. Am. Chem. Soc. 1999, 121, 12202.
(f) Taylor, S. J.; Duffey, M. O.; Morken, J. P. J. Am. Chem. Soc. 2000,
122, 4528. (g) Baik, T.-G.; Luis, A. L.; Wang, L.-C.; Krische, M. J. J.
Am. Chem. Soc. 2001, 123, 5112.
(3) For selected reviews on the Morita-Baylis-Hillman reaction, see: (a)
Drewes, S. E.; Roos, G. H. P. Tetrahedron 1988, 44, 4653. (b) Basavaiah,
D.; Rao, P. D.; Hyma, R. S. Tetrahedron 1996, 52, 8001. (c) Ciganek, E.
Org. React. 1997, 51, 201. (d) Langer, P. Angew. Chem., Int. Ed. 2000,
39, 3049.
(4) For a review, see: Tembe, G. L.; Bandyopadhyay, A. R.; Ganeshpure, P.
A.; Satish, S. Catal. ReV. Sci. Eng. 1996, 38, 299.
(5) For selected examples of the Rauhut-Currier reaction, see: (a) Rauhut,
M. M.; Currier, H. U.S. Patent, American Cyanamid Co., 1963, 3074999
19630122. (b) McClure, J. D. J. Org. Chem. 1970, 35, 3045. (c) Basavaiah,
D.; Gowriswari, V. V. L.; Bharathi, T. K. Tetrahedron Lett. 1987, 28,
4591. (d) Drewes, S. E.; Emslie, N. D.; Karodia, N. Syn. Commun. 1990,
20, 1915. (e) Jenner, G. Tetrahedron Lett. 2000, 41, 3091.
(6) For a mechanistic study, see: Hall, C. D.; Lowther, N.; Tweedy, B. R.;
Hall, A. C.; Shaw, G. J. Chem. Soc., Perkin Trans. 2 1998, 2047.
(7) For intramolecular Morita-Baylis-Hillman protocols, see: (a) Roth, F.;
Gygax, P.; Fra´ter, G. Tetrahedron Lett. 1992, 33, 1045. (b) Drewes, S.
E.; Njamela, O. L.; Emslie, N. D.; Ramesar, N.; Field, J. S. Synth.
Commun. 1993, 23, 2807. (c) Black, G. P.; Dinon, F.; Fratucello, S.;
Murphy, P. J.; Nielson, M.; Williams, H. L.; Walshe, N. D. A. Tetrahedron
Lett. 1997, 38, 8561. (d) Dinon, F.; Richards, E.; Murphy, P. J.; Hibbs,
D. E.; Hursthouse, M. B.; Malik, K. M. A. Tetrahedron Lett. 1999, 40,
3279. (e) Richards, E. L.; Murphy, P. J.; Dinon, F.; Fratucello, S.; Brown,
P. M.; Gelbrich, T.; Hursthouse, M. B. Tetrahedron 2001, 57, 7771.
(8) For a review on tandem conjugate addition-Michael cyclization reactions,
see: Ihara, M.; Fukumoto, K. Angew. Chem., Int. Ed. Engl. 1993, 32,
1010.
a Procedure: Tributylphosphine was added to a 0.1 M solution of
substrate in the indicated solvent and the reaction was allowed to stir at the
indicated temperature until complete. b Yield based on recovered starting
material. c 20 mol % PBu3 used.
Though detailed mechanistic studies have not been undertaken,
a plausible mechanism for the phosphine-catalyzed cycloisomer-
ization of bis(enones) is proposed below.6 Conjugate addition of
tributylphosphine I to the indicated bis(enone) provides enolate II.
Subsequent intramolecular conjugate addition to the appendant
enone yields zwitterionic intermediate III. Finally, proton-transfer
enables â-elimination of tributylphosphine to complete the catalytic
cycle. Cycloisomerization performed in d6-acetone did not yield
products incorporating deuterium, indicating that proton transfer
occurs between substrate molecules either inter- or, more likely,
intramolecularly.
(9) For selected tandem conjugate addition-Michael cyclization reactions,
see: (a) Uyehara, T.; Shida, N.; Yamamoto, Y. J. Chem. Soc., Chem.
Commun. 1989, 113. (b) Saito, S.; Hirohara, Y.; Narahara, O.; Moriwake,
T. J. Am. Chem. Soc. 1989, 111, 4533. (c) Klimko, P. G.; Singleton, D.
A. J. Org. Chem. 1992, 57, 1733. (d) Uyehara, T.; Shida, N.; Yamamoto,
Y. J. Org. Chem. 1992, 57, 3139. (e) Ihara, M.; Suzuki, S.; Taniguchi,
N.; Fukumoto, K. J. Chem. Soc., Chem. Commun. 1993, 755. (f) Urones,
J. G.; Garrido, N. M.; Diez, D.; Dominguez, S. H.; Davies, S. G.
Tetrahedron Asymm. 1997, 8, 2683. (g) Takeda, K.; Ohkawa, N.; Hori,
K.; Koizumi, T.; Yoshii, E. Heterocycles 1998, 47, 277.
(10) Isomeric ratios were determined by 1H NMR. For ratios of >95:5, the
minor isomer was not observed.
JA0121686
9
J. AM. CHEM. SOC. VOL. 124, NO. 11, 2002 2403