if the terminal double bond is in fact oxidized in the condensed
phase the ketone could still be an important intermediate
product, only to be lost to SOZ formation. These are not
exclusive; what we know with certainty is that ketone produc-
tion is very small.
11 J. F. Pankow, An absorption model of the gas/aerosol partitioning
involved in the formation of secondary organic aerosol, Atmos.
Environ., 1994, 28, 189.
1
2 J. Odum, T. Hoffmann, F. Bowman, D. Collins, R. Flagan and J.
Seinfeld, Gas/particle partitioning and secondary organic aerosol
yields, Environ. Sci. Technol., 1996, 30, 2580.
1
3 E. M. Lipsky and A. L. Robinson, Effects of dilution on fine
particle mass and partitioning of semivolatile organics in diesel
exhaust and wood smoke, Environ. Sci. Technol., 2006, 40,
155–162.
This work represents a step toward solution of the ‘genera-
1
6
tion problem’ in atmospheric organic aerosol chemistry. The
problem is how to represent the complex, multi-generation
chemistry associated with the complex mixture that comprises
atmospheric organic aerosols. This work reveals clearly that
ozonolysis, at least, can lead to highly oxidized products from
terpenes with a large carbon number and an O : C ratio
approaching unity, and that the effect of the oxidation chem-
istry on similar precursors shares common features. The next
question is whether continued oxidation of these products
1
4 M. K. Shrivastava, E. M. Lipsky, C. O. Stanier and A. L.
Robinson, Modeling semi-volatile organic aerosol mass emissions
from combustion systems, Environ. Sci. Technol., 2006, 40,
2
671–2677.
15 N. M. Donahue, A. L. Robinson, C. O. Stanier and S. N. Pandis,
Coupled partitioning, dilution, and chemical aging of semivolatile
organics, Environ. Sci. Technol., 2006, 40, 2635–2643.
1
6 N. M. Donahue, K. E. Huff Hartz, B. Chuong, A. A. Presto, C. O.
Stanier, T. Rosenørn, A. L. Robinson and S. N. Pandis, Critical
factors determining the variation in SOA yields from terpene
ozonolysis: A combined experimental and computational study,
Faraday Discuss., 2005, 130, 295–309.
(
presumably by OH radical attack) will continue to reduce the
vapor pressures of the products, or whether fragmentation will
drive the vapor pressures back up as the products head toward
complete oxidation.
1
7 A. L. Robinson, N. M. Donahue, M. Shrivastava, A. M. Sage, E.
A. Weitkamp, A. Greishop, T. E. Lane and S. N. Pandis, Rethink-
ing organic aerosols: Semivolatile emissions and photochemical
aging, Science, 2007, 315, 1259–1263.
1
8 S. Pandis, S. Paulson, J. Seinfeld and R. Flagan, Aerosol forma-
tion in the photooxidation of isoprene and b-pinene, Atmos.
Environ., 1991, 26, 997.
Acknowledgements
This work was supported by grants RD-83108101 from the US
EPA and ATM-0446495 from NSF. Although the research
described in this manuscript has been funded in part by the
United States Environmental Protection Agency, it has not
been subjected to the Agency’s required peer and policy review
and therefore does not necessarily reflect the views of the
Agency and no official endorsement should be inferred.
19 R. Griffin, D. Cocker, R. Flagan and J. Seinfeld, Organic aerosol
formation from the oxidation of biogenic hydrocarbons, J. Geo-
phys. Res., 1999, 104, 3555.
2
0 J. H. Kroll, N. L. Ng, S. M. Murphy, R. C. Flagan and J. H.
Seinfeld, Secondary organic aerosol formation from isoprene
photooxidation, Environ. Sci. Technol., 2006, 40, 1869–1877.
1 M. Claeys, B. Graham, G. Vas, W. Wang, R. Vermeylan, V.
Pashynska, J. Cafmeyer, P. Guyon, M. Andreae, P. Artaxo and
W. Maenhaut, Formation of secondary organic aerosols through
photooxidation of isoprene, Science, 2004, 303, 1173.
2
2
2 P. Ziemann, Evidence for low-volatility diacyl peroxides as a
nucleating agent and major component of aerosol formed from
References
3
reactions of O with cyclohexene and homologous compounds,
1
2
3
4
5
6
7
8
9
D. Grosjean, E. L. Williams and J. H. Seinfeld, Atmospheric
oxidation of selected terpenes and related carbonyls: Gas-phase
carbonyl products, Environ. Sci. Technol., 1992, 26, 1526–1533.
P. J. Adams and J. H. Seinfeld, Disproportionate impact of
particulate emissions on global cloud condensation nuclei concen-
trations, Geophys. Res. Lett., 2002, 30, 1239.
Intergovernmental Panel on Climate Change, Climate Change: The
Physical Science Basis, IPCC Secretariat, 7 bis, Avenue de la Paix,
C. P. N1 2300, 1211 Geneva 2, Switzerland, 2007.
R. J. Charlson, J. E. Lovelock, M. O. Andreae and S. G. Warren,
Ocean phytoplankton, atmospheric sulfur, cloud albedo, and
climate, Nature, 1987, 326, 655–661.
C. I. Davidson, R. F. Phalen and P. A. Solomon, Airborne
particulate matter and human health: A review, Aerosol Sci.
Technol., 2005, 39, 737–749.
L. Clancey, P. Goodman, H. Sinclain and D. W. Dockery, Effects
of air pollution control on death rates in Dublin, Ireland: An
intervention study, Lancet, 2002, 360, 1210–1214.
G. Oberdorster, Z. Sharp, V. Atudorei, A. Elder, R. Gelein, W.
Kreyling and C. Cox, Translocation of inhaled ultrafine particles
to the brain, Inhalation Toxicol., 2004, 16, 437–445.
A. E. Wittig, N. Anderson, A. Y. Khlystov, P. S. N., C. Davidson
and A. L. Robinson, Pittsburgh Air Quality Study overview,
Atmos. Environ., 2004, 38, 3107–3125.
P. Formenti, W. Elbert, W. Maenhaut, J. Haywood, S. Osborne
and M. O. Andreae, Inorganic and carbonaceous aerosols during
the Southern African Regional Science Initiative (SAFARI 2000)
experiment: Chemical characteristics, physical properties and emis-
sion data for smoke from African biomass burning, J. Geophys.
Res. A, 2003, 108, 8488.
J. Phys. Chem. A, 2002, 106, 4390.
23 N. L. Ng, J. H. Kroll, M. D. Keywood, R. Bahreini, V. Var-
utbangkul, R. C. Flagan, J. H. Seinfeld, A. Lee and A. H. Gold-
stein, Contribution of first- versus second-generation products to
secondary organic aerosols formed in the oxidation of biogenic
hydrocarbons, Environ. Sci. Technol., 2006, 40, 2283–2297.
24 S. H. Chung and J. H. Seinfeld, Global distribution and climate
forcing of carbonaceous aerosols, J. Geophys. Res., 2002,
107, 4407.
25 Q. Zhang, D. R. Worsnop, M. R. Canagaratna and J.-L. Jimenez,
Hydrocarbon-like and oxygenated organic aerosols in Pittsburgh:
insights into sources and processes of organic aerosols, Atmos.
Chem. Phys., 2005, 5, 3289.
26 R. Volkamer, J. L. Jimenez, F. San Martini, K. Dzepina, Q.
Zhang, D. Salcedo, L. T. Molina, D. R. Worsnop and M. J.
Molina, Secondary organic aerosol formation from anthropogenic
air pollution: Rapid and higher than expected, Geophys. Res. Lett.,
2006, 33, L17811.
27 M. Kalberer, D. Paulsen, M. Sax, M. Steinbacher, J. Dommen, A.
S. H. Prevot, R. Fisseha, E. Weingartner, V. Frankevic, R. Zenobi
and U. Baltensperger, Identification of polymers as major compo-
nents of atmospheric organic aerosols, Science, 2004, 303, 1659.
28 A. A. Presto and N. M. Donahue, Investigation of a-pinene +
ozone secondary organic aerosol formation at low total aerosol
mass, Environ. Sci. Technol., 2006, 40, 3536–3543.
29 J. Zhang, K. E. Huff Hartz, R. K. Pathak, S. N. Pandis and N. M.
Donahue, Secondary organic aerosol formation from limonene
ozonolysis: Homogeneous and heterogeneous influences as a func-
x
tion of NO , J. Phys. Chem. A, 2006, 110, 11053–11063.
30 R. K. Pathak, C. O. Stanier, N. M. Donahue and S. N. Pandis,
Ozonolysis of a-pinene at atmospherically relevant concentrations:
Temperature dependence of aerosol mass fractions (yields),
J. Geophys. Res., 2007, 112, D03201, DOI: 10.1029/2006JD007436.
1
0 Y. Rudich, N. M. Donahue and T. F. Mentel, Aging of organic
aerosol: bridging the gap between laboratory and field studies,
Annu. Rev. Phys. Chem., 2007, 58, 321–352.
This journal is ꢀc the Owner Societies 2007
Phys. Chem. Chem. Phys., 2007, 9, 2991–2998 | 2997