2562
J.-H. HU ET AL.
filtered, washed with water to remove inorganic salts, dried, and recrystallized from DMF-
◦
1
EtOH-H2O to give the title compound. Yield, 78%; mp 179–181 C; H NMR (CDCl3,
400 MHz) δ: 12.28 (s, 1H, NH), 11.62 (s, H, NH), 7.24∼8.14(m, 9H, Ar H); 13C NMR
(CDCl3, 400 MHz) δ: 124.3, 125.0, 127.1, 128.3, 128.9, 130.0, 131.9, 134.3, 137.2, 145.8,
166.7, 177.9; ESI-MS: 301.7(m/z+1).IR (KBr, cm−1) υ: 3169, 3028 (NH), 1691 (C O),
1258(C S); Anal. Calc. for C14H11N3SO3: C: 55.80, H: 3.68, N: 13.95; Found C: 55.77,
H: 3.70, N: 13.97.
Preparation of the Complex {Cu(HL)2Cl}2
The ligand (5 mmol) was dissolved in DMF (5 mL). To this solution, CuCl2·2H2O
(2.5mmol) in EtOH (5 mL) was added. After stirring the solution at room temperature for 2 h,
the yellow precipitate was filtered and obtained. During the process, oxidation–reduction
reactions occurred.18 Single crystals were obtained in CH3CN after 1 month by slow
evaporation at room temperature. Anal. Calc. for C56H44Cl2Cu2N12O12S4: C: 47.93, H:
3.16, N: 11.98; Found C: 47.86, H: 3.01, N: 11.85.1H NMR (CDCl3, 400 MHz) δ:12.12 (s,
2H, NH) δ: 9.46 (s, 2H, NH) δ:7.26∼8.18 (m, 18H, Ar H) 13C NMR (CDCl3, 400 MHz)
124.3, 124.4, 125.4, 128.1, 129.3, 129.7, 131.5, 133.9, 136.0, 145.9, 168.4, 178.9.
REFERENCES
1. K. Kamala, and P. J. Rao, Synth. Commun., 19, 2621 (1989).
2. G. Y. Sarkis and E. D. Faisal, J. Heterocycl. Chem., 22, 137 (1985).
3. T. B. Wei, J. C. Chen, X. C. Wang, and S.Y. Yang, Chem. J. Chinese Univ., 13, 1217 (1992).
4. S. E. Livingstone, In Comprehensive Coordination Chemistry, G. Wilkinson, Ed. (Pergamon
Press, Oxford, UK, 1987), vol. 2, p. 639.
5. (a) M. Lipowska, B. L. Hayes, L. Hansen, A. Taylor, and L.G. Marzilli, Inorg. Chem., 35,
4227 (1996); (b) L. A. Hoferkamp, G. Rheinwald, H. Stoeckli-Evans, and G. SussFink,
Organometallics., 15, 1122 (1996); (c) C. Sacht, M. S. Datt, S. Otto, and A. Roodt, J. Chem. Soc.
Dalton Trans., 4579 (2000); (d) P. L. Watson, J. A. Albanese, J. C. Calabrese, D. W. Ovenall,
and R. G. Smith, Inorg. Chem., 30, 4638 (1991).
6. W. Henderson, R. D. W. Kemmitt, S. Mason, M. R. Moore, J. Fawcett, and D. R. Russell, J.
Chem. Soc., Dalton Trans., 59 (1992).
7. L. M. Fostiak, I. Garc´ıa, J. K. Swearingen, E. Bermejo, A. Castineiras, and D. X. West, Polyhe-
dron, 22, 83 (2003).
8. W. Kaminsky, J. P. Jasinski, R. Woudenberg, K. L. Goldberg, and D. X. West, J. Mol. Struct.,
608, 135 (2002).
9. W. Q. Zhou, L. M. Zhu, Y. Zhang, Z. F. Yu, L. D. Lu, and X. J. Yang, Vib. Spectrosc., 36, 73
(2004).
10. D. E. Fuerst and E. N. Jacobsen, J. Am. Chem. Soc., 127, 8964 (2005).
11. E. Rodriguez-Fernandez, J. L. Manzano, J. J. Benito, R. Hermosa, E. Monte, and J. J. Criado,
J. Inorg. Biochem., 99, 1558 (2005).
12. Y. E. Filinchuk, V. V. Oliinik, T. Glovya, and M. G. Mys’kiv, Russ. J. Coord. Chem., 27, 126
(2001).
13. J. H. Hu, D. S. Li, C. C. and T. B. Wei, Acta Cryst. E, 62, 3418 (2006).
14. J. H. Hu, W. X. Xu, and T. B. Wei, Spectroscopy and Spectral Analysis, 27, 1172 (2007).
15. J. H. Hu, L. Xu, J. Wang, and T. B. Wei, Phosphorus, Sulfur Silicon Relat. Elem., 183, 1584
(2008).
16. J. H. Hu, H. X. Pang, and T. B.Wei, Chinese J. Inorg. Chem., 25, 1243 (2009).
17. L. Pauling, The Nature of the Chemical Bond, 3rd ed. (Cornell University Press, Ithaca, NY,
1960).
18. L. Xian, T. B. Wei, and Y. M. Zhang, J. Coord. Chem., 57, 453 (2004).