10.1002/chem.201904545
Chemistry - A European Journal
COMMUNICATION
Liu, A. Krasovskiy, P. Knochel, J. Am. Chem. Soc. 2007, 129, 12358; c)
A. Krasovskiy, V. Malakhov, A. Gavryushin, P. Knochel, Angew. Chem.
2006, 118, 6186; Angew. Chem. Int. Ed. 2006, 45, 6040; d) A. Guijarro,
D. M. Rosenberg, R. D. Rieke, J. Am. Chem. Soc. 1999, 121, 4155; e)
L. Zhu, R. M. Wehmeyer, R. D. Rieke, J. Org. Chem. 1991, 56, 1445; f)
E. Erdik, Tetrahedron 1987, 43, 2203.
Naturforschung B 1984, 39, 180; for a cobalt-DAD catalyst, see: f) A.
Moncomble, P. Le Floch, C. Gosmini, Chem. Eur. J. 2009, 15, 4770.
[19] a) H. tom Dieck, M. Svoboda, T. Greiser, Z. Naturforsch. B 1981, 36,
823; b) H. tom Dieck, J. Dietrich, Chem. Ber. 1984, 117, 694.
[20] NiCl2(dme)–L1–Zn0 failed to catalyze a halide exchange between 1a
and NaI to give 2a in THF, see the Supporting Information.
[8]
[9]
B. Bogdanović, M. Schwickardi, Angew. Chem. 2000, 112, 4788 ;
Angew. Chem. Int. Ed. 2000, 39, 4610.
[21] a) C. Sämann, V. Dhayalan, P. R. Schreiner, P. Knochel, Org. Lett.
2014, 16, 2418; b) F. M. Piller, A. Metzger, M. A. Schade, B. A. Haag, A.
Gavryushin, P. Knochel, Chem. Eur. J. 2009, 15, 7192; c) A. Metzger, F.
M. Piller, P. Knochel, Chem. Commun. 2008, 5824.
a) H. Fillon, J. Périchon, C. Gosmini, J. Am. Chem. Soc. 2003, 125, a)
H. Fillon, J. Périchon, C. Gosmini, J. Am. Chem. Soc. 2003, 125, 3867;
b) I. Kazmierski, C. Gosmini, J.-M. Paris, J. Périchon, Tetrahedron Lett.
2003, 44, 6417; c) C. Gosmini, Mg. Amatore, S. Claudel, J. Périchon,
Synlett 2005, 2171; d) Y. Bourne-Branchu, A. Moncomble, M. Corpet,
G. Danoun, C. Gosmini, Synthesis 2016, 48, 3352. e) J. Périchon, C.
Gosmini, O. Buriez, Electrochemical Generation and Reaction of Zinc
Reagents in PATAI’S Chemistry of Functional Groups, John Wiley &
Sons, 2009. For an application, see: e) C. S. Yeung, V. M. Dong, J. Am.
Chem. Soc. 2008, 130, 7826.
[22] Ni–phenanthrolin type catalysts are widely applied in reductive coupling
or carboxylation reactions involving RX (X typically halogen) and
electrophiles (including RX’, carbonyls, CO2, alkene
+ RX’); for
examples, see: a) Y. Sumida, T. Hosoya, T. Sumida, Synthesis 2017,
49, 3590; b) A. García-Domínguez, Z. Li, C. Nevado, J. Am. Chem. Soc.
2017, 139, 6835; c) M. Börjesson, T. Moragas, R. Martin, J. Am. Chem.
Soc. 2016, 138, 7504; d) F. Rebih, M. Andreini, A. Moncomble, A.
Harrison-Marchand, J. Maddaluno, M. Durandetti, Chem. Eur. J. 2016,
22, 3758; e) Y. Zhou, C. Uyeda, Angew. Chem. 2016, 128, 3223;
Angew. Chem. Int. Ed. 2016, 55, 3171; f) G. A. Molander, K. M. Traister,
B. T. O’Neill, J. Org. Chem. 2015, 80, 2907; g) L. K. G. Ackerman, M. M.
Lovell, D. J. Weix, Nature 2015, 524, 454; h) X. Wang, Y. Liu, R. Martin,
J. Am. Chem. Soc. 2015, 137, 6476; i) K. M. Arendt, A. G. Doyle,
Angew. Chem. 2015, 127, 10014; Angew. Chem. Int. Ed. 2015, 54,
9876; k) Y. Liu; J. Cornella; R. Martin, J. Am. Chem. Soc. 2014, 136,
11212; l) S. Biswas, D. J. Weix, J. Am. Chem. Soc. 2013, 135, 16192;
m) T. Fujihara, K. Nogi, T. Xu, J. Terao, Y. Tsuji, J. Am. Chem. Soc.
2012, 134, 9106; n) D. A. Everson, B. A. Jones, D. J. Weix, J. Am.
Chem. Soc. 2012, 134, 6146; o) D. A. Everson, R. Shrestha, D. J. Weix,
[10] M.-Y. Jin, N. Yoshikai, J. Org. Chem. 2011, 76, 1972.
[11] a) H. Normant, P. Perrin, Bull. Soc. Chim. Fr. 1957, 801; b) C. Jubert, P.
Knochel, J. Org. Chem. 1992, 57, 5425; c) D. Guijarro, G. Guillena, B.
Mancheño, M. Yus, Tetrahedron 1994, 50, 3427; d) T. Harada, T.
Kaneko, T. Fujiwara, A. Oku, J. Org. Chem. 1997, 62, 8966; e) S.-H.
Kim, R. D. Rieke, J. Org. Chem. 2000, 65, 2322.
[12] a) T. Sheppard, Org. Biomol. Chem. 2009, 7, 1043; b) T. P. Burns, R. D.
Rieke, J. Org. Chem. 1987, 52, 3674.
[13] For mostly analytical precedent of zincation of ArOMs with a CoBr2–
bipy-catalyst (0–36% yield), or more efficient reactions with ArOTf (61–
87%): I. Kazmierski, C. Gosmini, J.-M. Paris, J. Périchon, Synlett 2006,
881.
J. Am. Chem. Soc. 2010, 132, 3636; p) D. A. Everson, R. Shrestha, D.
J. Weix, J. Am. Chem. Soc. 2010, 132, 920.
[14] For
a cobalt-catalyzed sulfonate–copper exchange of specifically
[23] Iodide-effects in Ni-catalyzed reductive coupling were also seen in ref.
[Fehler! Textmarke nicht definiert.b].
functionalized ArOSO2R': C. J. Rohbogner, C. R. Diène, T. J. Korn, P.
Knochel, Angew. Chem. 2010, 122, 1918; Angew. Chem. Int. Ed. 2010,
49, 1874.
[24] Remaining activator 1,2-dichloroethane was also detected, indicating
low reactivity of alkyl chlorides in this catalysis.
[15] Besides direct metal insertion, ArOSO2R can be catalytically borylated
with HB(OR)2–base or diboryl reagents: a) W. K. Chow, O. Y. Yuen, P.
Y. Choy, C. M. So, C. P. Lau, W. T. Wong, F. Y. Kwong, RSC
Advances 2013, 3, 12518; b) M. Murata, Heterocycles 2012, 85, 1795;
c) G. A. Molander, S. L. J. Trice, S. M. Kennedy, S. D. Dreher, M. T.
Tudge, J. Am. Chem. Soc. 2012, 134, 11667; d) B. M. Rosen, K. W.
Quasdorf, D. A. Wilson, N. Zhang, A.-M. Resmerita, N. K. Garg, V.
Percec, Chem. Rev. 2011, 111, 1346; e) D. A. Wilson, C. J. Wilson, C.
Moldoveanu, A.-M. Resmerita, P. Corcoran, L. M. Hoang, B. M. Rosen,
V. Percec, J. Am. Chem. Soc. 2010, 132, 1800; f) J. Huffman, A.
Thompson, G. Kabalka, M. Akula, Synthesis 2005, 547. g) M. Murata, T.
Oyama, S. Watanabe, Y. Masuda, J. Org. Chem. 2000, 65, 164; h) T.
Ishiyama, Y. Itoh, T. Kitano, N. Miyaura, Tetrahedron Lett. 1997, 38,
3447.
[25] a) L. C. McCann, M. G. Organ, Angew. Chem. 2014, 126, 4475; Angew.
Chem. Int. Ed. 2014, 53, 4386; b) A. Hernán-Gómez, E. Herd, E. Hevia,
A. R. Kennedy, P. Knochel, K. Koszinowski, S. M. Manolikakes, R. E.
Mulvey, C. Schnegelsberg, Angew. Chem. 2014, 126, 2744; Angew.
Chem. Int. Ed. 2014, 53, 2706; c) L. Jin, C. Liu, J. Liu, F. Hu, Y. Lan, A.
S. Batsanov, J. A. K. Howard, T. B. Marder, A. Lei, J. Am. Chem. Soc.
2009, 131, 16656.
[26] a) R. A. Altman, S. L. Buchwald, Nature Protocols 2007, 2, 3115; b) G.
Manolikakes, C. Muñoz Hernandez, M. A. Schade, A. Metzger, P.
Knochel, J. Org. Chem. 2008, 73, 8422.
[27] a) H. Tokuyama, S. Yokoshima, T. Yamashita, T. Fukuyama,
Tetrahedron Lett. 1998, 39, 3189; b) L. Melzig, A. Metzger, P. Knochel,
Chem. Eur. J. 2011, 17, 2948; c) P. H. Gehrtz, P. Kathe, I. Fleischer,
Chem. Eur. J. 2018, 24, 8774; d) K. Murakami, J. Imoto, H. Matsubara,
S. Yoshida, H. Yorimitsu, K. Oshima, Chem. Eur. J. 2013, 19, 5625.
[28] Precedent of cobalt-catalyzed zincation of heteroaryl methylthioethers:
J.-M. Begouin, M. Rivard, C. Gosmini, Chem. Commun. 2010, 46, 5972.
[29] Cursory experiments showed the inactivity of 1-naphtyhl methyl ether, -
trifluoroacetate and pivalate.
[16] For reductive homocoupling of ArOSO2R to Ar–Ar under simlar
conditions, see: a) M. Durandetti, J. Maddaluno, Synlett 2015, 26,
2385; b) A. Jutand, A. Mosleh, J. Org. Chem. 1997, 62, 261; c) A.
Jutand, A. Mosleh, Synlett 1993, 568.
[17] T. Schimmel, Übergangsmetall-katalysierte Metallierungsreaktionen,
Thesis for the First State Examination for Secondary School Teachers,
RWTH Aachen, 2004. Key results from the screening are presented in
the Supporting Information.
[30] Transmetalation MX
+ RM’ = MR + M’X is thermodynamically
favourable if aryl/alkyl group R is moving from electropositive M’ to less
electropositive (more electron-rich) M: a) J. Chatt, B. L. Shaw, J. Chem.
Soc. (Resumed) 1960, 1718; b) O. Wendt, Curr. Org. Chem. 2007, 11,
1417.
[18] Ni-DAD combinations in catalysis: a) Y. Kuang, D. Anthony, J. Katigbak,
F. Marrucci, S. Humagain, T. Diao, Chem 2017, 3, 268; b) A. Y.
Lebedev, A. F. Asachenko, A. Z. Voskoboynikov, A. Razavi,
WO2007111537 (A2); c) J. C. M. Sinnema, G. H. B. Fendesak, H. tom
Dieck, J. Organomet. Chem. 1990, 390, 237; d) R. Diercks, H. Dieck
tom, Chem. Ber. 1985, 118, 428; e) R. Diercks and H. tom Dieck, Z.
[31] Species of type Ni0(L)2 (ref.[19]) and [(NiIBr(L))2] (ref.[18a]) have been
characterized with either L1 or similar DAD ligands.
This article is protected by copyright. All rights reserved.