lieved to be the intermediates when the reaction was carried
out in the absence of phosphines or N-heterocyclic carbene
ligands.5b The triple bond nature of arynes led us to consider
that alkynes might also function similarly as in situ generated
arynes. We thus envisioned that carbopalladation of alkynes
could generate vinylpalladium(II)X complexes I (Scheme 1).6
and (b) undergo transmetalation followed by reductive
elimination (cross-coupling process) to yield cis-stilbenoid
hydrocarbons, which are potentially useful in the fields of
molecular sensors and molecular electronics.11,12 Therefore,
two types of domino reactions, namely, domino carbopal-
ladation-cyclization to form polysubstituted indenes and
domino carbopalladation-cross-coupling to form cis-stil-
benoid hydrocarbons containing highly substituted phenyl
groups, might be developed from the same alkynes and
hindered Grignard reagents if the two competing pathways
could be controlled (Scheme 1). Herein, we report our
successful realization of these two types of reactions by
controlling the use of ligands and the reaction temperature.
On the basis of the consideration that the activation of a
C-H bond would involve the interaction of a C-H bond
with a Pd(II) center and that such an interaction would be
disfavored at higher reaction temperature and/or in the
presence of ligands, we surmised the cyclization via an sp3
C-H activation process would be favored in the absence of
ligands and at lower reaction temperature. We thus began
our study by examining the reaction of diphenylacetylene
with 2-mesitylPd(II)(OAc), in situ generated from 2-mesit-
ylmagnesium bromide with Pd(OAc)2. We found that the
domino carbopalladation-cyclization product 4,6-dimethyl-
2,3-diphenylindene was the major product with only Pd-
(OAc)2 as the promoter, at room temperature, 60 °C, or
refluxing (Table 1, entries 1, 2, and 5). The use of PPh3 as
a ligand decreases the formation of the cyclization product
and slows down the reaction (Table 1, entries 2-4). By using
4 equiv of PPh3 in refluxing THF, the domino carbopalla-
dation-cross-coupling product became the major product,
along with the self-coupling of the Grignard reagent as the
main side reaction (Table 1, entry 7). Our results suggested
that by controlling the use of the ligand and reaction temper-
ature, it is possible to control the domino reaction pathways.
As Pd(II)X2 would be reduced to Pd(0) after every reaction
cycle, after establishing factors that influence the reaction
competing pathways, we next turned our attention to
developing the catalytic version of these two types of domino
reactions by identifying oxidants that could oxidize Pd(0)
species to Pd(II) species. We have tested several commonly
Scheme 1. Domino Carbopalladation-Cyclization via sp3
C-H Activation vs Domino Carbopalladation-Cross-Coupling
Reaction
I could then (a) undergo cyclization via C-H activation7,8
to afford substituted indenes, which are structural constituents
of metallocene-based catalysts for olefin polymerizations, of
biologically active compounds, and of functional materials,9,10
(3) Selected recent examples of Pd-catalyzed tandem/domino reactions:
(a) Mariampillai, B.; Alberico, D.; Bidau, V.; Lautens, M. J. Am. Chem.
Soc. 2006, 128, 14436-14437. (b) Bertrand, M. B.; Wolfe, J. P. Org. Lett.
2006, 8, 2353-2356. (c) Leclerc, J.-P.; Andre, M.; Fagnou, K. J. Org. Chem.
2006, 71, 1711-1714. (d) Henderson, J. L.; Edwards, A. S.; Greaney, M.
F. J. Am. Chem. Soc. 2006, 128, 7426-7427. (e) Pinto, A.; Neuville, L.;
Retailleau, P.; Zhu, J. Org. Lett. 2006, 8, 4927-4930. (f) Martins, A.;
Marquardt, U.; Kasravi, N.; Alberico, D.; Lautens, M. J. Org. Chem. 2006,
71, 4937-4942. (g) Hay, M. B.; Wolfe, J. P. J. Am. Chem. Soc. 2005, 127,
16468-16476. (h) Tsang, W. C. P.; Zheng, N.; Buchwald, S. L. J. Am.
Chem. Soc. 2005, 127, 14560-14561. (i) Bressy, C.; Alberico, D.; Lautens,
M. J. Am. Chem. Soc. 2005, 127, 13148-13149. (j) Zhao, J.; Larock, R.
C. Org. Lett. 2005, 7, 701-704. (k) Ohno, H.; Yamamoto, M.; Iuchi, M.;
Tanaka, T. Angew. Chem., Int. Ed. 2005, 44, 5103-5106. (l) Yang, Q.;
Ney, J. E.; Wolfe, J. P. Org. Lett. 2005, 7, 2575-2578. (m) Cheung, W.
S.; Patch, R. J.; Player, M. R. J. Org. Chem. 2005, 70, 3741-3744. (n)
Zhao, J.; Larock, R. C. Org. Lett. 2005, 7, 701-704. (o) Ganton, M. D.;
Kerr, M. A. Org. Lett. 2005, 7, 4777-4779. (p) Abbiati, G.; Arcadi, A.;
Canevari, V.; Capezzuto, L.; Rossi, E. J. Org. Chem. 2005, 70, 6454-
6460. (q) Huang, Q.; Fazio, A.; Dai, G.; Campo, M. A.; Larock, R. C. J.
Am. Chem. Soc. 2004, 126, 7460-7461. (r) Wolfe, J. P.; Rossi, M. A. J.
Am. Chem. Soc. 2004, 126, 1620-1621. (s) Ney, J. E.; Wolfe, J. P. Angew.
Chem., Int. Ed. 2004, 43, 3605-3608.
(9) (a) Alt, H. G.; Ko¨ppl, A. Chem. ReV. 2000, 100, 1205-1222. (b)
Korte, A.; Legros, J.; Bolm, C. Synlett 2004, 13, 2397-2399 and references
therein. (c) Barbera, J.; Rakitin, O. A.; Ros, M. B.; Torroba, T. Angew.
Chem., Int. Ed. 1998, 37, 296-299.
(4) For examples: (a) Nakhla, J. S.; Kampf, J. W.; Wolfe, J. P. J. Am.
Chem. Soc. 2006, 128, 2893-2901. (b) Ney, J. E.; Wolfe, J. P. J. Am.
Chem. Soc. 2005, 127, 8644-8651. Also see refs 1 and 2.
(5) (a) Dong, C.-G.; Hu, Q.-S. Org. Lett. 2006, 8, 5057-5060. (b) Dong,
C.-G.; Hu, Q.-S. Angew. Chem., Int. Ed. 2006, 45, 2289-2292.
(6) Recent reviews for carbopalladation of alkynes: (a) Zeni, G.; Larock,
R. C. Chem. ReV. 2004, 104, 2285-2310. (b) de Meijere, A.; von
Zezschwitz, P.; Brase, S. Acc. Chem. Res. 2005, 38, 413-422.
(10) Substituted indenes were typically prepared in more than one step.
For recent examples of one-pot access to substituted indenes with different
substitution patterns from 2-(2-(1-alkynyl)phenyl)malonates or 2-(2-halo-
phenyl)malonate: (a) Guo, L.-N.; Duan, X.-H.; Bi, H.-P.; Liu, X.-Y.; Liang,
Y.-M. J. Org. Chem. 2006, 71, 3325-3327. (b) Zhang, D.; Yum, E. K.;
Liu, Z.; Larock, R. C. Org. Lett. 2005, 7, 4963-4966. Also see: (c)
Kuninobu, Y.; Nishina, Y.; Takai, K. Org. Lett. 2006, 8, 2891-2893. (d)
Nakamura, I.; Bajracharya, G. B.; Wu, H.; Oishi, K.; Mizushima, Y.;
Gridnev, I. D.; Yamamoto, Y. J. Am. Chem. Soc. 2004, 126, 15423-15430.
(11) (a) Rathore, R.; Lindeman, S. V.; Kochi, J. K. Angew. Chem. 1998,
110, 1665-1667; Angew. Chem., Int. Ed. 1998, 37, 1585-1587. (b) Irie,
M. Chem. ReV. 2000, 100, 1685-1716.
(12) The most efficient preparation methods reported so far involve the
use of 1,2-dibromoalkenes with hindered Grignard reagents: (a) Rathore,
R.; Deselnicu, M. I.; Burns, C. L. J. Am. Chem. Soc. 2002, 124, 14832-
14833. For other methods: (b) Maeda, K.; Okamoto, Y.; Morlender, N.;
Haddad, N.; Eventova, I.; Biali, S. E.; Rappoport, Z. J. Am. Chem. Soc.
1995, 117, 9686-9689. (c) Bottino, F. A.; Finocchiaro, P.; Libertini, E.;
Reale, A.; Recca, A. J. Chem. Soc., Perkin Trans. 2 1982, 77-81.
(7) Recent reviews for C-H activation: (a) Dyker, G., Ed. Handbook
of C-H Transformations: Application in Organic Synthesis; Wiley-VCH:
Weinheim, 2005; Vol. 2. (b) Kakiuchi, F.; Chatani, N. AdV. Synth. Catal.
2003, 345, 1077-1101. (c) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. ReV.
2002, 102, 1731-1770. (d) Jia, C.; Kitamura, T.; Fujiwara, Y. Acc. Chem.
Res. 2001, 34, 633-639.
(8) For examples of Pd-catalyzed cyclizations via sp3 C-H activation:
(a) Baudoin, O.; Herrbach, A.; Gueritte, F. Angew. Chem., Int. Ed. 2003,
42, 5736-5740. (b) Suau, R.; Lopez-Romero, J. M.; Rico, R. D.
Tetrahedron Lett. 1996, 37, 9357-9360. (c) Dyker, G. J. Org. Chem. 1993,
58, 6426-6428. (d) Dyker, G. Angew. Chem., Int. Ed. 1994, 33, 103-105.
(e) Dyker, G. Angew. Chem., Int. Ed. 1992, 31, 1023-1025.
364
Org. Lett., Vol. 9, No. 2, 2007