Communications
[9] S. R. Halper, M. R. Malachowski, H. M. Delaney, S. M. Cohen,
Inorg. Chem. 2004, 43, 1242.
rings of CF3 groups periodically in the c-axis channels. The
hexagonal channels are therefore composed of alternating
layers of molecular hexagon “holes” and helical polymer
“walls” that remain in register with each other (inner
diameter ꢀ 15.4 ). Ultimately, the packing of the two
supramolecular entities suggests separation of the fluorous
phases drive the exotic solid-state arrangement of the
assembly. This hypothesis is further supported by the
observation that both [Cu(4-pyrdpm)(acac)] and [Cu(4-
[10] CCDC 225998 (3) and CCDC 225999 (4) contain the supple-
mentary crystallographic data for this paper. These data can be
ving.html (or from the Cambridge Crystallographic Data Centre,
12, Union Road, Cambridge CB21EZ, UK; fax: (+ 44)1223-
336-033; or deposit@ccdc.cam.ac.uk). Also see Supporting
Information.
[11] B. Hasenknopf, J.-M. Lehn, N. Boumediene, A. Dupont-Gervais,
A. Van Dorsselaer, B. Kneisel, D. Fenske, J. Am. Chem. Soc.
1997, 119, 10956.
pyrdpm)(tfacac)]
(tfacac = trifluoroacetononate)
form
simple, one-dimensional zig-zag coordination polymers.[9,23]
Ongoing studies in our laboratory are focused on the
host–guest chemistry and self-assembly of related complexes.
[12] P. J. Stang, N. E. Persky, J. Manna, J. Am. Chem. Soc. 1997, 119,
4777.
[13] T. Yamamoto, A. M. Arif, P. J. Stang, J. Am. Chem. Soc. 2003,
125, 12309.
[14] G. R. Newkome, T. J. Cho, C. N. Moorefield, G. R. Baker, R.
Cush, P. S. Russo, Angew. Chem. 1999, 111, 3899; Angew. Chem.
Int. Ed. 1999, 38, 3717.
[15] Y. L. Cho, H. Uh, S.-Y. Chang, H.-Y. Chang, M.-G. Choi, I. Shin,
K.-S. Jeong, J. Am. Chem. Soc. 2001, 123, 1258.
[16] M. M. Ali, F. M. MacDonnell, J. Am. Chem. Soc. 2000, 122,
11527.
[17] R. Takahashi, Y. Kobuke, J. Am. Chem. Soc. 2003, 125, 2372.
[18] D. T. Puerta, S. M. Cohen, Chem. Commun. 2003, 1278.
[19] K. Biradha, C. Seward, M. J. Zaworotko, Angew. Chem. 1999,
111, 584; Angew. Chem. Int. Ed. 1999, 38, 492.
[20] O. Mamula, A. von Zelewsky, T. Bark, G. Bernardinelli, Angew.
Chem. 1999, 111, 3129; Angew. Chem. Int. Ed. 1999, 38, 2945.
[21] J. D. Ranford, J. J. Vittal, D. Wu, X. Yang, Angew. Chem. 1999,
111, 3707; Angew. Chem. Int. Ed. 1999, 38, 3498.
[22] C. Kaes, M. W. Hosseini, C. E. F. Rickard, B. W. Skelton, A. H.
White, Angew. Chem. 1998, 110, 970; Angew. Chem. Int. Ed.
1998, 37, 920.
[23] S. R. Halper, S. M. Cohen, unpublished results.
[24] B. Bilgiꢀer, X. Xing, K. Kumar, J. Am. Chem. Soc. 2001, 123,
11815.
[25] B. Bilgiꢀer, A. Fichera, K. Kumar, J. Am. Chem. Soc. 2001, 123,
4393.
[26] E. N. G. Marsh, Chem. Biol. 2000, 7, R153.
[27] P. D. Rao, S. Dhanalekshmi, B. J. Littler, J. S. Lindsey, J. Org.
Chem. 2000, 65, 7323.
Experimental Section
[Cu3(4-pyrdpm)2(hfacac)4] (3): 5-(4-Pyridyl)dipyrromethane (1)[9,27]
(0.30 g, 1.34 mmol) was dissolved in CHCl3 (150 mL) and stirred in
an ice bath. 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (0.31 g,
1.34 mmol) was dissolved in benzene (100 mL) and added dropwise.
Cu(hfacac)2·H2O (0.64 g, 1.34 mmol) dissolved in CHCl3 (50 mL) was
added and stirred for 10 min to form the copper(ii) complex. The
reaction mixture was evaporated to dryness, and the product was
purified by column chromatography (SiO2; CHCl3 with 1% MeOH)
to afford a red solid (0.27 g, 27% yield). Elemental analysis (%) calcd
for C48H24F24N6O8Cu3·0.5CHCl3: C 38.35, H 1.63, N 5.53; found: C
38.02, H 1.27 , N 5.56. UV/Vis (CH2Cl2): lmax = 232, 304, 490 nm; IR
(film from CH2Cl2): n˜ = 1644, 1562, 1255, 1214, 1145, 1029, 1000 cmÀ1
Red plates of 3 were grown from a solution of the complexin CHCl 3
diffused with pentane.
.
[Cu(4-pyrdpm)(hfacac)] (4): 5-(4-Pyridyl)dipyrromethane (1)[9,27]
(0.30 g, 1.34 mmol) was oxidized as described for 3. Cu(hfacac)2·H2O
dissolved in 50 mL of CHCl3 was added in small increments until all of
the oxidized methene had been converted to the metal complex. The
addition was monitored by using TLC and UV/Vis spectroscopy. The
total added Cu(hfacac)2·H2O was 0.40 g (0.84 mmol, 0.63 equiv to 1).
The reaction mixture was evaporated to dryness and the product was
purified by column chromatography (SiO2; CHCl3 with 1% MeOH)
to afford a red solid (0.15 g, 22% yield). ESI-MS: m/z 490.9 [M + H]+.
Elemental analysis (%) calcd for C19H11F6N3O2Cu: C 46.49, H 2.26,
N 8.56; found: C 46.46, H 2.23, N 8.75. UV/Vis (CH2Cl2): lmax = 232,
312, 492 nm; IR (film from CH2Cl2): n˜ = 1648, 1560, 1252, 1209, 1144,
1030, 997 cmÀ1. Red-green blocks of 4 were grown from a solution of
the complexin CHCl 3 diffused with hexanes.
Received: December 12, 2003 [Z53520]
Keywords: coordination polymers · copper · fluorine ·
.
helical structures · supramolecular chemistry
[1] J. W. Steed, J. L. Atwood, Supramolecular Chemistry, Wiley,
New York, 2000.
[2] J.-P. Sauvage, Transition Metals in Supramolecular Chemistry,
Vol. 5, Wiley, New York, 1999.
[3] O. M. Yaghi, H. Li, C. Davis, D. Richardson, T. L. Groy, Acc.
Chem. Res. 1998, 31, 474.
[4] M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M.
O'Keeffe, O. M. Yaghi, Acc. Chem. Res. 2001, 34, 319.
[5] B. Moulton, M. J. Zaworotko, Chem. Rev. 2001, 101, 1629.
[6] E. G. Tulsky, J. R. Long, Chem. Mater. 2001, 13, 1149.
[7] H. Abourahma, B. Moulton, V. Kravtsov, M. J. Zaworotko, J.
Am. Chem. Soc. 2002, 124, 9990.
[8] S. R. Halper, S. M. Cohen, Chem. Eur. J. 2003, 9, 4661.
2388
ꢀ 2004 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2004, 43, 2385 –2388