September 2001
1225
1
4
2
8.0 °C (ether–methanol). H-NMR (200 MHz) d: 1.44 (3H, t, Jϭ7.0), References and Notes
.10—2.27 (1H, m), 2.51—2.65 (1H, m), 2.79—2.87 (2H, m), 4.08 (2H, q,
Jϭ7.0), 4.63 (1H, t, Jϭ4.8), 6.73—7.33 (8H, m). C-NMR (50 MHz) d:
5.0, 17.1, 27.8, 39.4, 63.5, 111.2, 120.2, 124.8, 126.9, 127.3, 128.8, 130.4,
31.4, 131.9, 138.8, 155.7. IR (KBr) cm : 1230. FAB-MS (positive ion
mode) m/z: 318 (M ). Anal. Calcd for C H OSe: C, 64.35; H, 5.72. Found:
C, 64.26; H, 5.48.
-(3-Ethoxyphenyl)selenochroman (17): Yellow oil. H-NMR (500 MHz)
1) a) Hori M., Kataoka T., Shimizu H., Tsutsumi K., Imaoka S., Hetero-
cycles, 26, 2365—2368 (1987); b) Kataoka T., Tsutsumi K., Kano K.,
Mori K., Miyake M., Yokota M., Shimizu H., Hori M., J. Chem. Soc.,
Perkin Trans 1, 1990, 3017—3025.
2) Christiaens L. E. E., “Comprehensive Heterocyclic Chemistry II,” Vol.
5, ed. by Katritzky A. R., Ress C. W., Scriven E. F. V., Pergamon, Ox-
ford, 1996, pp. 619—637.
1
3
1
1
Ϫ1
ϩ
1
7
18
1
4
d: 1.39 (3H, t, Jϭ7.0), 2.30—2.44 (2H, m), 2.89—2.93 (2H, m), 4.00 (2H,
q, Jϭ7.0), 4.15 (1H, t, Jϭ6.0), 6.63—6.73 (2H, m), 6.74 (1H, dd, Jϭ8.5,
3) a) Bellinger N., Cagniant P., Cagniant D., Renson M., Bull. Soc. Chim.
Fr., 7, 2689—2699 (1971); b) Tadino A., Christiaens L., Thibaut P.,
Renson M., Bull. Soc. Roy. Sci. Liege., 42, 129—145 (1973); c) Weber
R., Christiaens L., Thibaut P., Renson M., Tetrahedron, 30, 3865—
3871 (1974); d) Wadsworth D. H., Detty M. R., J. Org. Chem., 45,
4611—4615 (1980); e) Detty M. R., Murray B. J., J. Am. Chem. Soc.,
105, 883—890 (1983); f ) Lamaire C., Luxen A., Christiaens L., Guil-
laume M., J. Heterocycl. Chem., 20, 811—812 (1983); g) Luxen A. J.,
Christiaens L. E. E., Renson M. J., J. Organometal. Chem., 287, 81—
85 (1985); h) Sashida H., Synthesis, 1998, 745—748.
2
2
6
1
.0), 6.91 (1H, d, Jϭ7.5), 6.99 (1H, td, Jϭ7.5, 1.5), 7.07 (1H, td, Jϭ7.5,
1
3
.0), 7.18—7.33 (2H, m). C-NMR (125 MHz) d: 14.8, 16.6, 30.5, 45.8,
3.2, 111.9, 114.8, 120.6, 124.8, 127.9, 128.4, 128.9, 129.2, 131.3, 138.2,
Ϫ1
45.4, 159.0. IR (CHCl ) cm : 2900, 1580, 1460, 1430. FAB-MS (positive
3
ϩ
ϩ
ion mode) m/z: 318 (M ). HR-MS (FAB): Calcd for C H OSe (M ):
1
7
18
3
18.0523. Found: 318.0520.
,4-Dimethylselenochroman (18): Yellow oil. H-NMR (200 MHz) d:
.32 (6H, s), 1.98 (2H, t, Jϭ6.4), 3.01 (t, Jϭ6.4), 6.94—7.11 (2H, m), 7.22
1
4
1
1
3
(
2
1H, dd, Jϭ7.4, 2.0), 7.39 (1H, dd, Jϭ7.6, 1.8). C-NMR (50 MHz) d: 16.0,
4) Abe H., Koshiba N., Yamasaki A., Harayama T., Heterocycles, 51,
2301—2304 (1999).
5) Abe H., Yamasaki A., Harayama T., Chem. Pharm. Bull., 46, 1311—
1313 (1998).
Ϫ1
9.0, 34.3, 37.6, 124.9, 126.0, 126.3, 129.0, 144.6. IR (CHCl ) cm : 2880,
3
ϩ
1
580, 1460, 1430. FAB-MS (positive ion mode) m/z: 226 (M ). HR-MS
ϩ
(
FAB): Calcd for C H Se (M ): 226.0261. Found: 226.0236.
11
14
3
,3-Diphenyl-1-phenylseleno-2-propene (19): Colorless needles; mp
6) a) Miyoshi N., Ishii H., Kondo K., Murai S., Sonoda N., Synthesis,
1979, 300—301; b) David M., Synlett, 2001, 445.
7) We consider that the low yield of 18 is due to the instability of the in-
termediate, phenyl prenyl selenide, under this reaction condition. Gen-
eration of a large amount of diphenyl didelenide was observed by TLC
analysis.
1
5
6
1
1
0.5—51 °C (ether–methanol). H-NMR (60 MHz) d: 3.63 (2H, d, Jϭ8.2),
13
.27 (1H, t, Jϭ8.2), 6.90—7.54 (15H, m). C-NMR (50 MHz) d: 27.5,
24.9, 127.1, 127.2, 127.3, 127.4, 128.1, 128.2, 128.9, 129.7, 130.0, 133.8,
Ϫ1
38.8, 141.9, 143.6. IR (KBr) cm : 1580, 1500, 1480. FAB-MS (positive
ion mode) m/z: 350 (M ). Anal. Calcd for C H Se: C, 72.20; H, 5.19.
ϩ
2
1
18
Found: C, 72.15; H, 5.32.
E)-3-(4-Methoxyphenyl)-1-phenylseleno-2-propene
prisms; mp 93.5—95.5 °C (ethanol). H-NMR (500 MHz) d: 3.67 (2H, d,
Jϭ6.5), 3.78 (3H, s), 6.17 (1H, dt, Jϭ15.0, 6.5), 6.19 (1H, d, Jϭ15.0), 6.81
8) Wakefield B. J., “Organomagnesium Methods in Organic Synthesis,”
Academic Press, London, 1995, p. 114.
9) Bussas R., Münsterer H., Kresze G., J. Org. Chem., 48, 2828—2832
(1983).
(
(20):
Colorless
1
(
2H, d, Jϭ9.0), 7.21 (2H, d, Jϭ9.0), 7.23—7.26 (3H, m), 7.49—7.53 (2H,
10) LeTadic-Biadatti M.-H., Callier-Dublanchet A.-C., Horner J. H.,
Quiclet-Sire B., Zard S. Z., Newcomb M., J. Org. Chem., 62, 559—
563 (1997).
11) Novák L., Rohály J., Poppe L., Hornyánszky G., Kolonits P., Zelei I.,
Fehér I., Fekete J., Szabo É., Záhorszky U., Jávor A., Szántay C., Jus-
tus Liebigs Ann. Chem., 1992, 145—157.
13
m). C-NMR (50 MHz) d: 30.9, 55.2, 113.9, 123.6, 127.2, 127.4, 128.9,
1
7
7
29.6, 130.0, 131.6, 133.8, 159.1. Se-NMR (38 MHz) d: 348.3. IR
Ϫ1
(
CHCl ) cm : 3000, 2825, 1605, 1510, 1205, 1170, 1030, 960, 820, 690.
3
Anal. Calcd for C H OSe: C, 63.37; H, 5.32. Found: C, 63.49; H, 5.32.
16
16
Acknowledgements A part of this work was supported by a grant-in-aid 12) Nomura M., Tada T., Henmi A., Fujihara Y., Shimomura K., Nippon
from the Ministry of Education, Science, Sports and Culture, Japan (No.
Kagaku Kaishi, 1995, 986—993.
2771354 to H. A.). The authors thank the SC-NMR laboratory of Okayama 13) Srikrishna A., Viswajanani R., Yelamaggad C. V., Tetrahedron, 53,
1
University for the high field NMR experiments.
10479—10488 (1997).
1
1
1
4) Ando K., Tetrahedron Lett., 36, 4105—4108 (1995).
5) Fukuda T., Irie R., Katsuki T., Tetrahedron, 55, 649—664 (1999).
6) Jones B., Watkinson J. G., J. Chem. Soc., 1958, 4064—4069.