In 2008, Gaunt et al. reported a copper-catalyzed aryla-
We began our exploration by testing model substrate 1a
with diphenylidonium salt (2a) under the catalysis of
various copper sources. To our great delight, the reaction
proceeded smoothly in dichloromethane at room tempera-
ture to afford the desired dearomative product 3a in
satisfactory yields (entries 1À6, Table 1). Among these
tested copper sources, (CuOTf) PhMe performed best
6
c
tion of indoles with a favorable C-3 selectivity. Inspired
by this pioneering work, we envisioned that a copper-
catalyzed cascade dearomatization reaction of 2-substi-
tuted tryptophols including the direct arylation at the
indole C-3 position and a subsequent iminium ion trapping
would afford the furoindoline derivatives with two qua-
ternary carbon centers (Scheme 1). Herein, we report the
preliminary results on such a copper-catalyzed dearoma-
tization reaction of 2-substituted tryptophols affording
2
3
(94% yield, entry 4, Table 1). To further explore this
cascade sequence, several frequently used Lewis acids were
also examined. However, none of them could catalyze this
reaction efficiently (entries 7À11, Table 1).
7
,8
furoindoline derivatives.
With (CuOTf) PhMe as the catalyst, the catalyst load-
2
3
ing was then examined. With2.5 or1 mol % of the catalyst,
the reaction could also proceed smoothly but with a
prolonged reaction time (entries 12À13, Table 1). With
Scheme 1. Proposed Cascade Dearomatization of 2-Substituted
Tryptophols via Copper-Catalyzed Arylation Reaction with
Diarylidonium Salts
5
mol % of (CuOTf) PhMe, the reaction conditions were
2
3
further optimized. Various solvents (CHCl , DCE, tol-
3
uene, Et O, THF, and CH CN) were tested, and all led
2
3
to the formation of the desired product 3a except for
CH CN (entries 14À19, Table 1). The reaction in CH Cl
3
2
2
gave the best yield (entry 4, Table 1). The syn stereochemistry
of product 3a was established by an X-ray crystallographic
analysis (see the Supporting Information for details).
Under the optimized reaction conditions (5 mol % of
(
CuOTf) PhMe in CH Cl , rt), the scope of the reaction
2 2 2
3
was explored. The results are summarized in Scheme 2.
First, the substituent at the C-2 position of tryptophol was
9
tested. The phenyl group could be tolerated, and 3b was
obtained in 87% yield after refluxing for 48 h. Second,
Table 1. Evaluation of Catalysts and Reaction Conditions
(
6) For recent reviews on diaryliodonium salts, see: (a) Deprez,
N. R.; Sanford, M. S. Inorg. Chem. 2007, 46, 1924. (b) Merritt, E. A.;
Olofsson, B. Angew. Chem., Int. Ed. 2009, 48, 9052. For selected
Cu-catalyzed arylation with diaryliodonium salts: (c) Phipps, R. J.;
Grimster, N. P.; Gaunt, M. J. J. Am. Chem. Soc. 2008, 130, 8172.
(
d) Phipps, R. J.; Gaunt, M. J. Science 2009, 323, 1593. (e) Ciana, C.-L.;
Phipps, R. J.; Brandt, J. R.; Meyer, F. M.; Gaunt, M. J. Angew. Chem.,
Int. Ed. 2011, 50, 458. (f) Duong, H. A.; Gilligan, R. E.; Cooke, M. L.;
Phipps, R. J.; Gaunt, M. J. Angew. Chem., Int. Ed. 2011, 50, 463.
time
(h)
yield
a
b
entry
catalyst
solvent
(%)
(
g) Bigot, A.; Williamson, A. E.; Gaunt, M. J. J. Am. Chem. Soc.
2
011, 133, 13778. (h) Allen, A. E.; MacMillan, D. W. C. J. Am. Chem.
1
2
3
Cu(OTf)
Cu(OAc)
2
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
CH
2
2
2
2
2
2
2
2
2
2
2
2
2
Cl
Cl
Cl
Cl
Cl
Cl
Cl
Cl
Cl
Cl
Cl
Cl
Cl
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
91
Soc. 2011, 133, 4260. (i) Harvey, J. S.; Simonovich, S. P.; Jamison, C. R.;
MacMillan, D. W. C. J. Am. Chem. Soc. 2011, 133, 13782. (j) Phipps,
R. J.; McMurray, L.; Ritter, S.; Duong, H. A.; Gaunt, M. J. J. Am.
Chem. Soc. 2012, 134, 10773. For selected Pd-catalyzed arylation with
diaryliodonium salts: (k) Kalyani, D.; Deprez, N. R.; Desai, L. V.;
Sanford, M. S. J. Am. Chem. Soc. 2005, 127, 7330. (l) Deprez, N. R.;
Sanford, M. S. J. Am. Chem. Soc. 2009, 131, 11234. (m) Xiao, B.; Fu, Y.;
Xu, J.; Gong, T.-J.; Dai, J.-J.; Yi, J.; Liu, L. J. Am. Chem. Soc. 2010, 132,
468. For an organic base promoted C-3 arylation of 3-substituted indole
with diaryliodonium salts: (n) Eastman, K.; Baran, P. S. Tetrahedron
2
82
Cu(ClO
(CuOTf)
4
)
2
6H
2
O
28
1
80
3
c
4
2
PhMe
94
3
5
6
7
8
9
6
CuPF (CH
CuCl
3
CN)
4
20
18
48
48
48
48
48
12
12
24
24
48
3
90
75
Sc(OTf)
3
<5
N.R.
<5
N.R.
<5
90
Zn(OTf)
Sn(OTf)
2
3
2
009, 65, 3149.
7) For recent reviews on dearomatization reaction, see: (a) Pouys ꢀe gu,
1
0
Bi(OTf)
Pd(OAc)
2
3
(
11
L.; Deffieux, D.; Quideau, S. Tetrahedron 2010, 66, 2235. (b) Roche, S. P.;
Porco, J. A., Jr Angew. Chem., Int. Ed. 2011, 50, 4068. (c) Zhang, D.; Song,
H.; Qin, Y. Acc. Chem. Res. 2011, 44, 447. For selected dearomatization
reactions from our group, see: (d) Wu, Q.-F.; He, H.; Liu, W.-B.; You, S.-L.
J. Am. Chem. Soc. 2010, 132, 11418. (e) Wu, Q.-F.; Liu, W.-B.; Zhuo, C.-X.;
Rong, Z.-Q.; Ye, K.-Y.; You, S.-L. Angew. Chem., Int. Ed. 2011, 50, 4455.
(f) Cai, Q.; Zheng, C.; You, S.-L. Angew. Chem., Int. Ed. 2011, 50, 8665.
(g) Zhuo, C.-X.; Liu, W.-B.; Wu, Q.-F.; You, S.-L. Chem. Sci. 2012, 3, 205.
(h) Wu, Q.-F.; Zheng, C.; You, S.-L. Angew. Chem., Int. Ed. 2012, 51, 1680.
(i) Cai, Q.; You, S.-L. Org. Lett. 2012, 14, 3040. (j) Wu, K.-J.; Dai, L.-X.;
You, S.-L. Org. Lett. 2012, 14, 3772.
d
e
c
c
c
c
c
c
12
13
14
15
16
17
18
19
(CuOTf)
(CuOTf)
(CuOTf)
(CuOTf)
(CuOTf)
(CuOTf)
(CuOTf)
(CuOTf)
2
2
2
2
2
2
2
2
PhMe
PhMe
PhMe
PhMe
PhMe
PhMe
PhMe
PhMe
3
3
3
3
3
3
3
3
84
2
Et O
80
THF
63
toluene
DCE
71
86
CHCl
CH CN
3
3
73
3
48
N.R.
(
8) During the preparation of the manuscript, Zhu and MacMillan
a
Reaction conditions: 1a (0.3 mmol), 2a (0.36 mmol), catalyst (0.03
mmol) in solvent (3 mL) at rt. Isolated yield. 5 mol % of (CuOTf)
reported an enantioselective copper-catalyzed construction of aryl-
pyrroloindolines via an arylationÀcyclization cascade; see: Zhu, S.;
MacMillan, D. W. C. J. Am. Chem. Soc. 2012, 134, 10815.
(9) Under the optimized reaction conditions, 2-(2-phenyl-1H-indol-
-yl)ethanol was isolated in 86% yield when tryptophol was used.
b
c
2
3
d
PhMe was used. 2.5 mol
mol % of (CuOTf)
2
%
of (CuOTf)
2
3 PhMe
was used.
e
1
3 PhMe was used.
3
4
526
Org. Lett., Vol. 14, No. 17, 2012