7266 J. Phys. Chem. B, Vol. 106, No. 29, 2002
Kimura et al.
Pileni, M. P. J. Phys. Chem. 1995, 99, 16425. (c) Arnold, R. J.; Reilly, J.
P. J. Am. Chem. Soc. 1998, 12, 1528. (d) Ingram, R. S.; Hostetler, M. J.;
Murray, R. W. J. Am. Chem. Soc. 1997, 11, 9175. (e) Templeton, A. C.;
Hostetler, M. J.; Kraft, C. T.; Murray, R. W. J. Am. Chem. Soc. 1998, 120,
1906. (f) Templeton, A. C.; Chen, S.; Gross, S. M.; Murray, R. W. Langmuir
1999, 15, 66.
(2) Ohshima, H. J. Colloid Interface Sci. 2001, 239, 587.
(3) (a) Tao, Yu-Tai; Pandiaraju, S.; Lin, Wen-Ling; Chen, Li-Jen.
Langmuir 1998, 14, 145. (b) Heath, J.; Knobler, C. M.; Leff, D. V. J. Phys.
Chem. 1997, 101, 189. (c) Fink, J.; Kiely, C. J.; Bethell, D.; Schiffrin, D.
J. Chem. Mater. 1998, 10, 922. (d) Ulman, A. Chem. ReV. 1996, 96, 1533.
(e) Buinig, P. A.; Humbel, B. M.; Philipse, A. P.; Verkleij, A. J. Langmuir
1997, 13, 3921. (f) Hostetler, M. J.; Stokes, J. J.; Murray, R. W. Langmuir
1996, 12, 3604.
3. Dissolution of carbon dioxide from air though we did all
experiments within a short time interval.
4. Incomplete coverage of MSA against our estimate of full
coverage.
5. We used distilled water instead of ultra clean water.
Among these, 2 and 3 are an exogenous impurity effect and
can be treated by “the effect of background ion”. This effect
largely depresses the absolute value of the surface potential.19
An unknown contaminant may largely decrease the surface
potential of the particles because of the low ionic intensity in
the present study. The effect of the variation of ionic strength
on the adsorption-desorption equilibrium has already been
discussed. Reason 1 is consistent with the results shown in
Figure 9 in the point that all measured potentials are less than
those of theory.
We believe that the present system is a good model for
charged particles in a suspension. However, it is still an open
question whether the surface potential concept can be applied
to nanometer-sized small particles up to 1 nm or so. Therefore
the measurement of ú-potential for much smaller particles
ranging over 2 or 3 nm in size is crucial for understanding the
potential of solid surfaces in solution. We have tried to measure
the ú-potential of the particles whose sizes are in the range from
2 to 4 nm; however, an unknown unstable scattering effect
prevents the accurate determination of the mobility. It remains
to us for a future task to measure the ú-potential of this
ultimately small particle, which lies between ions with formal
charge density of the order of 1 C/m2 and particles with typical
surface charge density of the order of 0.1 C/m2.
(4) Chen, S.; Kimura, K. Langmuir 1999, 15, 1075.
(5) Liang, S.; Matsubara, H.; Sato, S.; Yao, H.; Kimura, K. To be
submitted. It was directly proved by STM microscopy on the nanoparticles
that the gold surface was completely covered by MSA molecules with no
void and the surface of two Au atoms was occupied by a single MSA
molecule irrespective of the facet (100) or (111). The details of STM analysis
will be published elsewhere.
(6) Kimura, K.; Sato, S.; Yao, H. Chem. Lett. 2001, 372.
(7) (a) van Staveren, M. P.; Brom, H. B. J.; De Jongh, L. J.; Schmid,
G. Solid State Commun. 1986, 60, 319. (b) Whetten, R. L.; Khoury, J. T.;
Alvarez, M. M.; Murthy, S.; Vezmar, I.; Wang, L.; Stephens, P. H.;
Cleveland, C. L.; Luedtke, W. D.; Landman, U. AdV. Mater. 1996, 8, 428.
(c) Sandhyaranik, N.; Resmi, M. R.; Unnikrishnan, R.; Vidyasaggar, K.;
Ma, S.; Antony, M. P.; Selvam, G. P.; Visalakshi, V.; Chandrakumar, N.;
Pandian, K.; Tao, Yu-Tai; Pradeep, T. Chem. Mater. 2000, 12, 104.
(8) Handley, D. A. Colloidal Gold: Principles, Methods, and Applica-
tion; Hayat, M. A., Ed.; Academic Press: San Diego, CA, 1989; Vol. 1,
pp 13-32.
(9) The equilibrium constants, pK1 ) 4.19, pK2 ) 5.64 are from Wade,
L. G., Jr. Organic Chemistry; Prentice Hall: New York, 1987; p 978.
(10) Sellers, H.; Ulman, A.; Schnidman, Y.; Eilers, J. E. J. Am. Chem.
Soc. 1993, 115, 9389.
(11) Typical value of surface charge density 0.1-0.3 C/m2. Israelachvili,
J. N. Intermolecular & Surface Forces, 2nd ed.; Academic Press: San
Diego, CA, 1992; Chapter 12, p 217.
In conclusion, we cannot achieve completely the original
objective that the measurement of ú-potential of a nanometer-
sized particle will check the applicability of surface potential
calculation from existing theory. We will get quantitative
agreement between the two potentials in future when one solves
above points from 1 to 5.
(12) Israelachvili, J. N. Intermolecular & Surface Forces, 2nd ed.;
Academic Press: San Diego, CA, 1992; p 234.
(13) (a) Ohshima, H. Electrical Double Layer. In Electrical Phenomena
at Interfaces; Fundamentals, Measurements, and Applications; Ohshima,
H., Furusawa, K., Eds.; 1998, Marcel Dekker: New York, 1998; p 10. (b)
Ohshima, H.; Healy, T. W.; White, L. R. J. Colloid Interface Sci. 1982,
90, 17. (c) Ohshima, H. J. Colloid Interface Sci. 1995, 171, 525.
(14) The chirality of the combined MSA molecules on the Au surface
was found by the STM images. Detailed analysis will be published soon.
(15) Henry, D. C. Proc. R. Soc. London, Ser. A 1931, 133, 106.
(16) Ohshima, H.; Healy, T. W.; White, L. R. J. Chem. Soc., Faraday
Trans. 2 1983, 79, 1613.
Acknowledgment. We thankDr. K. Takamura of BASF
Corp. for his invaluable comments on the electrophoretic
mobility in the low ionic strength region and its relation to
ú-potential. This study was supported in part by grant-in-aid
for Scientific Research on Basic Research (A: 09304068) from
Ministry of Education, Science, Sports and Culture, Japan.
(17) O’Brien, R. W.; White, L. R. J. Chem. Soc., Faraday Trans. 2
1978, 74, 1607.
(18) Ohshima, H. Electrokinetic Behavior of Particles. Encyclopedia of
Surface and Colloid Science; Hubbard, A., Ed.; Marcel Dekker: New York,
in press.
References and Notes
(1) (a) Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman,
R. J. Chem. Soc., Chem. Commun. 1994, 801. (b) Motte, L.; Billoudet, F.;
(19) Israelachvili, J. N. Intermolecular & Surface Forces, 2nd ed.;
Academic Press: San Diego, CA, 1992; pp 235-237.