20
C. Qi et al. / Journal of Catalysis 281 (2011) 12–20
[18] J. Chou, N.R. Franklin, S-H. Baeck, T.F. Jaramillo, E.W. McFarland, Catal. Lett. 95
(2004) 107.
[19] J. Lu, X. Zhang, J.J. Bravo-Suárez, K.K. Bando, T. Fujitani, S.T. Oyama, J. Catal. 250
(2007) 350.
[20] J. Huang, T. Takei, T. Akita, H. Ohashi, M. Haruta, Appl. Catal. B 95 (2010) 430.
[21] S.C. Crisafulli, S. Minicò, G.G. Condorelli, A.D. Mauro, J. Mol. Catal. A 284 (2008)
24.
whereas the epoxidation of propene and H2 oxidation are parallel
reactions. The ruling factors that determine the reaction pathways
are investigated by employing different types of support materials
and several catalyst preparation methods as well as by combining
the experimental data available from the published work.
Over Au nanoparticles deposited in the proximity of tetrahedral
Ti species, epoxidation of propene predominantly takes places with
a size of 2.0–5.0 nm in a mixture of H2 and O2. The presence of
alkalis promotes the epoxidation. The hydrogenation of propene
usually prevails on Au nanoparticles larger than 5.0 nm no matter
the presence of alkalis and on Au clusters smaller than 2.0 nm in
the absence of alkalis irrespective of the location of Au clusters
deposited either on Ti sites or on Si sites. A certain amount of alka-
lis can switch hydrogenation to epoxidation over Au clusters lo-
cated on TiO4 sites. The hydrogenation of propene is enhanced by
the addition of oxygen, and the catalytic activity varies with the
gas composition, the size of Au particles, and the type of supports.
[22] S. Naito, M. Tanimoto, J. Chem. Soc. Chem. Commun. 12 (1988) 832.
[23] Z. Shan, J.C. Jansen, L. Marchese, Th. Maschmeyer, Microporous Mesoporous
Mater. 48 (2001) 181.
[24] G.R. Bamwenda, S. Tsubota, T. Nakamura, M. Haruta, Catal. Lett. 44 (1997) 83.
[25] R. Zanella, L. Delannoy, C. Louis, Appl. Catal. A 291 (2005) 62.
[26] M. Ishida, N. Kinoshita, H. Okatsu, T. Akita, T. Takei, M. Haruta, Angew. Chem.
Int. Ed. 47 (2008) 9265.
[27] B.S. Uphade, S. Tsubota, T. Hayashi, M. Haruta, Chem. Lett. (1998) 1277.
[28] M.P. Kapoor, A.K. Sinha, S. Seelan, S. Inagaki, S. Tsubota, H. Yoshida, M. Haruta,
Chem. Commun. (2002) 2902.
[29] C. Qi, T. Akita, M. Okumura, M. Haruta, Appl. Catal. A 218 (2001) 81.
[30] T.A. Nijhuis, H. Huizinga, M. Makkee, J.A. Moulijn, Ind. Eng. Chem. Res. 38
(1999) 884.
[31] E.E. Stangland, K.B. Stavens, R.P. Andres, W.N. Delgass, J. Catal. 191 (2000) 332.
[32] G. Mul, A. Zwijnenburg, B. Linden, M. van der Makkee, J.A. Moulijn, J. Catal. 201
(2001) 128.
[33] N. Yap, R.P. Andres, W.N. Delgass, J. Catal. 226 (2004) 156.
[34] J. Chou, E.W. McFarland, Chem. Commun. (2004) 1648.
[35] B.S. Uphade, M. Okumura, S. Tsubota, M. Haruta, Appl. Catal. A 190 (2000) 43.
[36] L. Cumaranatunge, W.N. Delgass, J. Catal. 232 (2005) 38.
[37] E.E. Stangland, B. Taylor, R.P. Andres, W.N. Delgass, J. Phys. Chem. B 109 (2005)
232.
[38] S. Lee, L.M. Molina, M.L. Pez, J.A. Alonso, B. Hammer, B. Lee, S. Seifert, R.E.
Winans, J.W. Elam, M.J. Pellin, S. Vajda, Angew. Chem. Int. Ed. 48 (2009) 1467.
[39] M. Ojeda, E. Iglesia, Chem. Commun. (2009) 352.
[40] A.K. Sinha, S. Seelan, M. Okumura, T. Akita, S. Tsubota, M. Haruta, J. Phys. Chem.
B 109 (2005) 3956.
[41] B. Chowdhury, J.J. Bravo-Suárez, N. Mimura, J. Lu, K.K. Bando, S. Tsubota, M.
Haruta, J. Phys. Chem. B 110 (2006) 22995.
[42] D.H. Wells, W.N. Delgass, K.T. Thomson, J. Catal. 225 (2004) 69.
[43] M. Okumura, Y. Kitagawa, K. Yamaguchi, T. Akita, S. Tsubota, M. Haruta, Chem.
Lett. 32 (2003) 822.
[44] C. Sivandinarayana, T.V. Choudhardy, L.L. Daemen, J. Eckert, D.W. Goodman, J.
Am. Chem. Soc. 126 (2004) 38.
[45] B. Taylor, J. Lauterbach, G.E. Blau, W.N. Delgass, J. Catal. 242 (2006) 142.
[46] J. Lu, X. Zhang, J.J. Bravo-Suárez, S. Tsubota, J. Gaudet, S.T. Oyama, Catal. Today
123 (2007) 189.
[47] T. Fujitani, N.T. Akita, M. Okumura, M. Haruta, Angew. Chem. Int. Ed. 48 (2009)
9515.
[48] Y. Yang, M. Sushchikh, G. Mills, H. Metiu, E. McFarland, Appl. Surf. Sci. 229
(2004) 346.
[49] P. Panagiotopoulou, D.I. Kondarides, J. Catal. 267 (2009) 57.
[50] M. Haruta, T. Kobayashi, H. Sano, N. Yamada, Chem. Lett. (1987) 405.
[51] E. Klemm, E. Dietzsch, T. Schwarz, T. Kruppa, A. Lange, de. Oliveira, F. Becker, G.
Markowz, S. Schirrmeister, R. Schütte, K.J. Caspary, F. Schüth, D. Hönicke, Ind.
Eng. Chem. Res. 47 (2008) 2086.
[52] M.D. Hughes, Y.-J. Xu, P. Jenkins, P. McMorn, P. Landon, D.I. Enache, A.F. Carley,
G.A. Attard, G.J. Hutchings, F. King, E.H. Stitt, P. Johnston, K. Griffin, C.J. Kiely,
Nature 437 (2005) 1132.
[53] S. Bawaked, N.F. Dummer, N. Dimitratos, D. Bethell, Q. He, C.J. Kiely, G.J.
Hutchings, Green Chem. 11 (2009) 1037.
[54] V. Mendez, K. Guillois, S. Daniele, A. Tuel, V. Caps, Dalton Trans. 39 (2010)
8457.
Acknowledgments
Financial supports by Japan Science and Technology Agency to a
CREST research project on gold catalysts and the Grow Programme
from the World Gold Council (R.P. Project 0408) are greatly
acknowledged. The authors also thank Dr. Shinji Inagaki and Dr.
Yasutomo Goto of Toyota Central R & D Labs., Inc. Nagakute, Japan
and Prof. Dan Wang of the Institute of Process Engineering, Chinese
Academy of Sciences, Beijing, China, for providing us HPG and
anatase TiO2 microsphere, respectively.
References
[1] M. Haruta, N. Yamada, T. Kobayashi, S. Iijima, J. Catal. 115 (1989) 301.
[2] M. Haruta, S. Tsubota, T. Kobayashi, H. Kageyama, M.J. Genet, B. Delmon, J.
Catal. 144 (1993) 175.
[3] G.J. Hutchings, M. Haruta, Appl. Catal. A: Gen. 291 (2005) 1.
[4] A. Stephen, K. Hashmi, G.J. Hutchings, Angew. Chem. Int. Ed. 45 (2006) 7896.
[5] G.C. Bond, C. Louis, D.T. Thompson, Catalysis by Gold, Imperial College Press,
London, 2006. p. 161.
[6] G.J. Hutchings, W. Goodman, Top. Catal. 44 (2007) 1.
[7] T. Hayashi, K. Tanaka, M. Haruta, J. Catal. 178 (1998) 566.
[8] T.A. Nijhuis, M. Makkee, J.A. Moulijn, Bert M. Weckhuysen, Ind. Eng. Chem. Res.
45 (2006) 3447.
[9] C. Qi, Gold Bull. 41 (2008) 24.
[10] J. Huang, T. Akita, J. Faye, T. Fujitani, T. Takei, M. Haruta, Angew. Chem. Int. Ed.
48 (2009) 7862.
[11] A.K. Sinha, S. Seelan, S. Tsubota, M. Haruta, Angew. Chem. Int. Ed. 43 (2004)
1546.
[12] B. Chowdhury, J.J. Bravo-Suárez, M. Date, S. Tsubota, M. Haruta, Angew. Chem.
Int. Ed. 45 (2006) 412.
[13] B. Taylor, J. Lauterbach, W.N. Delgass, Appl. Catal. A 291 (2005) 188.
[14] B. Taylor, J. Lauterbach, W.N. Delgass, Catal. Today 123 (2007) 50.
[15] A.K. Sinha, S. Seelan, S. Tsubota, M. Haruta, Top. Catal. 29 (2004) 95.
[16] B.S. Uphade, T. Akita, T. Nakamura, M. Haruta, J. Catal. 209 (2002) 331.
[17] C. Qi, T. Akita, M. Okumura, K. Kuraoka, M. Haruta, Appl. Catal. A 253 (2003)
75.
[55] M. Turner, V.B. Golovko, O.P.H. Vaughan, P. Abdulkin, A. Berenguer-Murcia,
M.S. Tikhov, B.F.G. Johnson, R.M. Lambert, Nature 454 (2008) 981.
[56] Y. Liu, H. Tsunoyama, T. Akita, T. Tsukuda, Chem. Comun. 46 (2010) 550.