Paper
RSC Advances
hexanal and benzaldehyde from HPBP-PLA followed similar
trends, i.e., the presence of one precursor did not substantially
affect the release kinetics of aldehyde from the other
precursor.
5 R. H. Liu, Adv. Nutr., 2013, 4, 384S–392S.
6 J. Gustavsson, C. Cederberg, U. Sonesson, R. van Otterdijk
and A. Meybeck, Global Food Losses and Food Waste: Extent,
Causes and Prevention, FAO, Rome, 2011.
7 D. K. Salunkhe, H. R. Bolin and N. R. Reddy, Storage,
processing, and nutritional quality of fruits and vegetables.
Volume I. Fresh fruits and vegetables, CRC Press, Boca
Raton, Florida, 1991, vol. 1.
8 T. P. Labuza and W. M. Breene, J. Food Process. Preserv., 1989,
13, 1–69.
4. Conclusion
This study investigated the release of hexanal and benzaldehyde
from their precursor compounds entrapped in electrospun PLA
nonwovens. For the electrospinning of PLA, a less toxic binary
solvent (90 : 10 EF : DMSO) was used. The molecular structure
9 R. Ahvenainen, Trends Food Sci. Technol., 1996, 7, 179–187.
of the benzaldehyde precursor, 1,3-dibenzylethane-2-phenyl 10 P. Suppakul, J. Miltz, K. Sonneveld and S. W. Bigger, J. Food
imidazolidine, was conrmed using 1H NMR, 13C NMR, and
Sci., 2003, 68, 408–420.
FTIR spectroscopic analyses. SEM micrographs showed 11 M. Ozdemir and J. D. Floros, Crit. Rev. Food Sci. Nutr., 2004,
substantial differences in the morphology of the electrospun 44, 185–193.
bers, depending on the precursor loaded. From FTIR analyses, 12 H. J. D. Dorman and S. G. Deans, J. Appl. Microbiol., 2000, 88,
specic interactions were not detected between the precursors 308–316.
and the polymer, indicating physical entrapment of the 13 S. Burt, Int. J. Food Microbiol., 2004, 94, 223–253.
´
precursor within the polymer matrices. Both the hexanal and 14 G. I. Olivas, J. J. Rodriguez and G. V. Barbosa-Canovas, J.
benzaldehyde precursors exhibited steady volatile release Food Process. Preserv., 2003, 27, 299–320.
behaviors aer being activated by 1 N citric acid solution. The 15 E. Mani-Lopez, H. S. Garcıa and A. Lopez-Malo, Food Res.
aldehyde precursor-loaded nonwovens may be promising for Int., 2012, 45, 713–721.
´
´
´
active packaging applications for the delivery of bioactive 16 B. Nandi, J. Plant Dis. Prot., 1977, 84, 114–128.
aldehydes for the shelf-life extension of fresh produce. 17 V. Papandreou, P. Magiatis, I. Chinou, E. Kalpoutzakis,
Conceivably, a similar approach can be used for the stabiliza-
tion and delivery of other aldehydes. To this end, further
A.-L. Skaltsounis and A. Tsarbopoulos, J. Ethnopharmacol.,
2002, 81, 101–104.
development is needed to effectively exploit citric acid or other 18 P. J. Delaquis, K. Stanich, B. Girard and G. Mazza, Int. J. Food
mild acids to trigger the release of the aldehydes, such as Microbiol., 2002, 74, 101–109.
leveraging lateral ow and multilayer/composite carrier 19 R. Lanciotti, M. Rosaria Corbo, F. Gardini, M. Sinigaglia and
concepts. Incorporating a barrier polymer lm, which is M. E. Guerzoni, J. Agric. Food Chem., 1999, 47, 4769–4776.
permeable to the aldehydes but impermeable to the precursors 20 R. Lanciotti, A. Gianotti, F. Patrignani, N. Belletti,
and regenerated diamines, could be desirable to prevent
unwanted mass transfer from the precursor carrier to the food
product.
M. Guerzoni and F. Gardini, Trends Food Sci. Technol.,
2004, 15, 201–208.
21 M. E. Ramos-Nino, C. A. Ramirez-Rodriguez, M. N. Clifford
and M. R. Adams, J. Appl. Microbiol., 1998, 84, 207–212.
22 F. Neri, M. Mari, S. Brigati and P. Bertolini, Plant Dis., 2007,
91, 30–35.
Conflicts of interest
There are no conicts to declare.
23 R. M. Raybaudi-Massilia, J. Mosqueda-Melgar and O. Martin-
Belloso, J. Food Prot., 2006, 69, 1579–1586.
24 W. B. Hugo, J. Appl. Bacteriol., 1967, 30, 17–50.
25 D. Trombetta, A. Saija, G. Bisignano, S. Arena, S. Caruso,
G. Mazzanti, N. Uccella and F. Castelli, Lett. Appl.
Microbiol., 2002, 35, 285–290.
Acknowledgements
This work was carried out with the aid of a grant from Canada's
International Development Research Centre (IDRC) and with
nancial support from the Government of Canada, provided 26 G. Paliyath, R. G. Pinhero, R. Y. Yada and D. P. Murr, J. Agric.
through Global Affairs Canada (GAC). The authors gratefully Food Chem., 1999, 47, 2579–2588.
acknowledge the funding support from the Natural Sciences 27 G. Paliyath and J. Subramanian, in Postharvest biology and
and Engineering Research Council of Canada (NSERC) and
iFood Packaging Systems Corp.
technology of fruits, vegetables, and owers, ed. G. Paliyath,
D. Murr, A. Handa and S. Lurie, Wiley-Blackwell, Iowa,
2009, pp. 240–245.
28 M. March and J. Smith, March's advanced organic chemistry:
reactions, mechanisms, and structure, John Wiley & Sons,
New York, 2007.
29 C. Turek and F. C. Stintzing, Compr. Rev. Food Sci. Food Saf.,
2013, 12, 40–53.
References
1 P. van't Veer, M. C. Jansen, M. Klerk and F. J. Kok, Public
Health Nutr., 2000, 3, 103–107.
2 C. Kaur and H. C. Kapoor, Int. J. Food Sci. Technol., 2008, 36,
703–725.
3 T. Lobstein, L. Baur and R. Uauy, Obes. Rev., 2004, 5, 4–85.
4 J. L. Slavin and B. Lloyd, Adv. Nutr., 2012, 3, 506–516.
30 R. J. Ferm and J. L. Riebsomer, Chem. Rev., 1954, 54, 593–
613.
This journal is © The Royal Society of Chemistry 2018
RSC Adv., 2018, 8, 19930–19938 | 19937