C O M M U N I C A T I O N S
Table 1. NMR Spectral Data of 4 in Several Solvents and
Acceptor Number of the Solvents
Supporting Information Available: Details of experimental
procedures of all compounds (PDF) and data for X-ray crystallographic
analysis of 4 (CIF). This material is available free of charge via the
a
δH
solvent
δP
δSe
acceptor number
C6D6
-26.6
-20.2
-19.3
-13.6
147.5
144.3
138.3
129.9
8.97
9.04
9.08
9.11
8.2
18.9
20.4
23.1
CD3CN
CD2Cl2
CDCl3
References
(1) (a) Mathey, F. Chem. ReV. 1990, 90, 997. (b) Mathey, F.; Regitz, M. In
ComprehensiVe Heterocyclic Chemistry II; Katritzky, A. R., Rees, C. W.,
Scriven, E. F. V., Eds.; Pergamon: Amsterdam, 1996; Vol. 1A, pp 277-
304. (c) Mathey, F.; Regitz, M. In Phosphorus-Carbon Heterocyclic
Chemistry: The Rise of a New Domain; Mathey, F., Ed.; Pergamon:
Amsterdam, 2001; pp 17-55. (d) Ikeda, H.; Inagaki, S. J. Chem. Phys. A
2001, 105, 10711.
(2) For heteraphosphiranes involving a tri- and tetracoordinate phosphorus
atom, see: (a) Niecke, E.; Wildbredt, D.-A. J. Chem. Soc., Chem.
Commun. 1981, 72. (b) Caira, M.; Neilson, R. H.; Watson, W. H.; Wisian-
Neilson, P.; Xie, Z.-M. J. Chem. Soc., Chem. Commun. 1984, 698. (c)
Niecke, E.; Bo¨ske, J.; Krebs, B.; Dartmann, M. Chem. Ber. 1985, 118,
3227. (d) Niecke, E.; Symalla, E. Chimia 1985, 39, 320. (e) Xie, Z.-M.;
Wisian-Neilson, P.; Neilson, R. H. Organometallics 1985, 4, 339. (f)
Appel, R.; Casser, C. Chem. Ber. 1985, 118, 3419. (g) Bauer, S.; Marinetti,
A.; Ricard, L.; Mathey, F. Angew. Chem., Int. Ed. Engl. 1990, 29, 1166.
(h) Driess, M.; Pritzkow, H. Angew. Chem., Int. Ed. Engl. 1992, 31, 751.
(i) Ma¨rkl, G.; Ho¨lzl, W.; Kallmu¨nzer, A. Tetrahedron Lett. 1992, 33, 4421.
(j) Streubel, R.; Kusenberg, A.; Jeske, J.; Jones, P. G. Angew. Chem., Int.
Ed. Engl. 1994, 33, 2427. (k) Toyota, K.; Takahashi, H.; Shimura, K.;
Yoshifuji, M. Bull. Chem. Soc. Jpn. 1996, 69, 141. (l) Ruf, S. G.; Dietz,
J.; Regitz, M. Tetrahedron 2000, 56, 6259. (m) Vlaar, M. J. M.; Ehlers,
A. W.; de Kanter, F. J. J.; Schakel, M.; Spek, A. L.; Lutz, M.; Sigal, N.;
Apeloig, Y.; Lammertsma, K. Angew. Chem., Int. Ed. 2000, 39, 4127.
phosphorus and the selenium nuclei was observed in the cases of
1,2σ3-selenaphosphiranes,2d,f,l 4 showed no coupling between these
two nuclei. The reason for the absence of the coupling of 4 is
unclear at present. In the 1H NMR spectrum (C6D6), the ortho proton
of the Martin ligand (Ha) showed a high downfield shift (δH 8.97),
a
which is a typical feature of the compounds bearing the Martin
ligand with TBP and pseudo-TBP structures. It has been already
reported that the downfield shift of Ha is attributed to magnetic
deshielding by a polar apical bond.12 Therefore, the downfield shift
of Ha of 4 suggests that 4 has a polar P-Se bond and that the
selenium atom seems to be close to the C-Ha bond.
In the solution state, the selenaphosphirane 4 showed an
interesting behavior depending on the solvent. The results are
summarized in Table 1, together with acceptor numbers of the
solvents. Since the 31P resonances of 4 in these solvents still
appeared at high field, the phosphorus atom of 4 should retain the
pentacoordinate state in these solvents.13 A rough correlation was
found between the acceptor numbers of the solvents and the 31P
and 77Se NMR shifts of 4.14 The larger the acceptor number
becomes, the lower field the signal of 4 appeared in the 31P NMR
spectrum and the higher field the signal of 4 in the 77Se NMR
spectrum, respectively. Moreover, the signal of Ha is shifted to lower
field in the 1H NMR spectra as the acceptor number increases. These
results show that the negative charge on the selenium atom and
the positive charge on the phosphorus atom increase with increasing
acceptor number of the solvent, that is, the polarization of the P-Se
bond depends on the acceptor number of the solvent. Considering
the rough correlation of the acceptor number of the solvents with
the chemical shifts of 4 and its significance as an indicator of the
electrophilic property of the solvent, an interaction between the
negatively charged selenium atom of 4 and the solvent should exist
in the solution state.
Treatment of 4 with 2 equiv of methyl triflate in CDCl3 gave
the highly air-sensitive R-(methylseleno)alkyl phosphonium triflate
5 in 76% yield. The formation of 5 was reasonably explained by
the electrophilic attack of methyl triflate on the negatively charged
selenium atom of 4 and the subsequent dissociation of the P-Se
bond, reflecting the polarized character of the P-Se bond.
In summary, we have succeeded in the isolation of the first stable
1,2σ5-selenaphosphirane, 4, and elucidated its three-membered-ring
structure with a polarized P-Se bond. Further studies on its
reactivity are in progress.
(3) For three-membered-ring compounds bearing a pentacoordinate phosphorus
atom, see: (a) Burger, K.; Fehn, J.; Thenn, W. Angew. Chem., Int. Ed.
Engl. 1973, 12, 502. (b) Campbell, B. C.; Denny, D. B.; Denny, D. Z.;
Shih, L. S. J. Chem. Soc., Chem. Commun. 1978, 854. (c) Ehle, M.;
Wagner, O.; Bergstra¨sser, U.; Regitz, M. Tetrahedron Lett. 1990, 31, 3429.
(d) Abdou, W. M.; Yakout, E.-S. M. A. Tetrahedron 1993, 49, 6411. We
could not reproduce the result of ref 3d.
(4) For dioxaphosphiranides involving a hexacoordinate phosphorus atom,
see: Nakamoto, M.; Akiba. K.-y. J. Am. Chem. Soc. 1999, 121, 6958.
(5) Perozzi, E. F.; Michalak, R. S.; Figuly, G. D.; Stevenson, W. H., III;
Dess, D. B.; Ross, M. R.; Martin, J. C. J. Org. Chem. 1981, 46, 1049.
(6) Sase, S.; Kano, N.; Kawashima, T. Chem. Lett. 2002, 268.
(7) 4: colorless crystals, mp 94.1-96.2 °C (dec); 1H NMR (500 MHz, C6D6)
3
3
δ 1.78 (d, JPH ) 6.3 Hz, 3H), 1.86 (d, JPH ) 7.4 Hz, 3H), 6.95-7.10
3
(m, 5H), 7.33 (brt, 1H), 8.07-8.12 (m, 2H), 8.97 (dd, JPH ) 13.2 Hz,
3JHH ) 7.8 Hz, 1H); 13C{1H}NMR (126 MHz, C6D6) δ 14.0 (d, JPC
)
1
1
93 Hz, PCSe), 28.65 (s), 28.73 (s), 122.4 (q, JFC ) 288 Hz), 122.7 (q,
1JFC ) 287 Hz), 124.6 (d, 3JPC ) 15 Hz), 127.5 (d, 3JPC ) 15 Hz), 131.2
(d, 4JPC ) 3 Hz), 131.5 (d, 3JPC ) 14 Hz), 134.7 (d, 4JPC ) 3 Hz), 134.9
(d, 2JPC ) 11 Hz), 136.0 (d, 2JPC ) 20 Hz), 139.1 (d, 2JPC ) 8 Hz), three
signals due to quaternary carbons were not observed; 19F NMR (254 MHz,
4
4
C6D6) δ -74.3 (q, JFF ) 9.1 Hz, 3F), -74.9 (q, JFF ) 9.1 Hz, 3F);
31P{1H} NMR (109 MHz, C6D6) δ -26.6 (s); 77Se{1H} NMR (95 MHz,
C6D6) δ 147.5 (s); LRMS (EI): m/z 472 (M+). Anal. Calcd for C18H15F6-
OPSe: C, 45.88; H, 3.21. Found: C, 45.26; H, 4.00.
(8) For reactions of phosphorus ylides with elemental selenium, see: (a) Erker,
G.; Hock, R.; Nolte, R. J. Am. Chem. Soc. 1988, 110, 624. (b) Okuma,
K.; Sakata, J.-i.; Tachibana, Y.; Honda, T.; Ohta, H. Tetrahedron Lett.
1987, 28, 6649. (c) Okuma, K.; Komiya, Y.; Kaneko, I.; Tachibana, Y.;
Iwata, E.; Ohta, H. Bull. Chem. Soc. Jpn. 1990, 63, 1653.
(9) Crystallographic data for 4: C18H15F6OPSe, FW ) 471.24, T ) 173 K,
monoclinic, P21/n, a ) 14.306(2), b ) 8.6454(8), and c ) 16.0518(13)
Å, â ) 109.0760(9)°, V ) 1876.3(3) Å3, Z ) 4, Dcalc ) 1.668 g cm-3
.
The final cycle of full-matrix least squares refinement was based on all
3796 observed reflections and 304 variable parameters and converged at
R1 ) 0.033 (I > 2.00σ(I)) and wR2 ) 0.080 (all data) with GOF ) 1.13.
(10) Holmes, R. R.; Deiters, J. A. J. Am. Chem. Soc. 1977, 99, 3318.
(11) Pauling, L. In The Nature of the Chemical Bond, 3rd ed.; Cornell
University: New York, 1960; p 224.
Acknowledgment. This work was partially supported by a
Grant-in-Aid for Scientific Research from the Ministry of Education,
Culture, Sports, Science and Technology of Japan. We are grateful
to Dr. T. Sasaki of the University of Tokyo for technical assistance
in the solid-state NMR studies and for helpful comments. We also
thank Central Glass, Tosoh Finechem Corporation, and Shin-etsu
Chemical Co., Ltd. for gifts of organofluorine compounds, alkyl-
lithiums, and organosilicon compounds, respectively.
(12) Granoth, I.; Martin, J. C. J. Am. Chem. Soc. 1981, 103, 2711.
(13) (a) Wilker, S.; Laurent, C.; Sarter, C.; Puke, C.; Erker, G. J. Am. Chem.
Soc. 1995, 117, 7293. (b) Puke, C.; Erker, G.; Aust, N. C.; Wu¨rthwein,
E.-U.; Fro¨hlich, R. J. Am. Chem. Soc. 1998, 120, 4863.
(14) (a) Mayer, U.; Gutmann, V.; Gerger, W. Monatsh. Chem. 1975, 106, 1235.
(b) Mayer, U.; Gerger, W.; Gutmann, V. Monatsch. Chem. 1977, 108,
489. (c) Parker, A. J.; Mayer, U.; Schmid, R.; Gutmann, V. J. Org. Chem.
1978, 43, 1843.
JA026107Z
9
J. AM. CHEM. SOC. VOL. 124, NO. 33, 2002 9707