R. Vessecchi et al.
[
25] R. Vessecchi, Z. Naal, J. N. C. Lopes, S. E. Galembeck,
N. P. Lopes. Generation of Naphthoquinone radical anions
by electrospray ionization: solution, gas-phase, and compu-
tational chemistry studies. J. Phys. Chem. A 2011, 115, 5453.
26] M. L. McKee, M. Balci, H. Kilic, E. Yurtsever. Computational
studies of cyclobutadiene and benzocyclobutene fused to
p- and o-quinone. J. Phys. Chem A 1998, 102, 2351; M. M.
Balakrishnarajan, R. Hoffmann. Polyhedral boranes with
exo multiple bonds: three-dimensional inorganic analogues
of quinones. Angew. Chem. Int. Ed. 2003, 42, 3777.
K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui,
A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov,
G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin,
D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara,
M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen,
M. W. Wong, C. Gonzalez, J. A. Pople. Gaussian 03, Revision
C.02, Gaussian, Inc., Wallingford, CT, 2004.
[
[38] G. Lamoureux, A. L. Perez, M. Araya, C. Agüero. Reactivity
and structure of derivatives of 2-hydroxy-1,4-naphthoqui-
none (lawsone). J. Phys. Org. Chem. 2008, 21, 1022.
[39] P. J. Gaultier, C. Hauw. Structure de 1’a-naphthoquinone.
Acta Crystallogr. 1965, 18, 179; K. E. Wise, A. K. Grafton,
R. A. Wheeler. Trimethyl-p-benzoquinone provides excel-
lent structural, spectroscopic, and thermochemical models
for plastoquinone-1 and its radical anion. J. Phys. Chem A
1997, 101, 1160.
[40] R. Vessecchi, J. N. C. Lopes, N. P. Lopes, S. E. Galembeck.
Application of the atoms in molecules theory and computa-
tional chemistry in mass spectrometry analysis of 1,4-
naphthoquinone derivatives. J. Phys. Chem. A 2011, 115,
12780.
[41] U. C. Singh, P. A. Kollman. An approach to computing
electrostatic charges for molecules. J. Comp. Chem. 1984,
5, 129.
[42] R. F. W. Bader. Definition of molecular structure: by choice
or by appeal to observation? J. Phys. Chem. A 2010, 114, 7431;
R. F. W. Bader. A quantum-theory of molecular-structure
and its applications. Chem. Rev. 1991, 91, 893.
[
27] R. Y. Yang, D. Kizer, H. Wu, E. Volckova, X. S. Miao, S. M. Ali,
M. Tandon, R. E. Savage, T. C. K. Chan, M. A. Ashwell.
Synthetic methods for the preparation of ARQ 501
(
beta-lapachone) human blood metabolites. Bioorg Med.
Chem. 2008, 16, 5635.
[
28] M. Niehues, V. P. Barros, F. S. Emery, M. Dias-Baruffi, M. D. Assis,
N. P. Lopes. Biomimetic in vitro oxidation of lapachol: a
model to predict and analyse the in vivo phase I metabolism
of bioactive compounds. Eur. J. Med. Chem. 2012, 54, 804.
29] J. H. Bowie, D. W. Cameron, D. H. Williams. Studies in mass
pectrometry. I. Mass spectra of substituted naphthoquinones.
J. Am. Chem. Soc. 1965, 81, 5094; D. Becher, C. Djerassi,
R. E. Moore, H. Singh, P. J. Scheuer. Mass spectrometry in
structural and stereochemical problems. 111. Mass spectro-
metric fragmentation of substituted naphthoquinones and its
application to structural elucidation of echinoderm pigments.
J. Org. Chem. 1966, 31, 3650.
[
[30] W. G. Stensen, E. Jensen. Structural determination of
1
,4-naphthoquinones by mass spectrometry/mass spectro-
[43] M. Butler, P. A. Mañez, G. M. Cabrera. An experimental and
computational study on the dissociation behavior of hydro-
xypyridine N-oxides in atmospheric pressure ionization
mass spectrometry. J. Mass Spectrom. 2010, 45, 536.
J. Schönbohm. J. Comp. Chem. 2002, 23, 1489.
metry. J. Mass Spectrom. 1995, 30, 1126. V. Krishna,
J. Lamba, P. Singh. Conversion of lapachol to array of
furano and pyranonaphthoquinone congeners. J. Ind.
Chem. Soc. 2004, 81, 1039.
[
31] R. Vessecchi, S. E. Galembeck, N. P. Lopes, P. G. B. D.
Nascimento, A. E. M. Crotti. Application of computational
quantum chemistry to chemical processes involved in
mass spectrometry. Quim. Nova 2008, 31, 840.
[45] U. Varetto. <MOLEKEL 5.4>; Swiss National Supercom-
puting Centre, Manno, Switzerland.
[
[
[
32] E. Paternó. Richerce sull acido lapachico. Gazz. Chem. Ital.
[46] R. Vessecchi, F. S. Emery, S. E. Galembeck, N. P. Lopes.
Gas-phase reactivity of 2-hydroxy-1,4-naphthoquinones: a
computational and mass spectrometry study of lapachol
congeners. J. Mass Spectrom. 2012, 47, 1648.
[47] M. H. Amad, N. B. Cech, G. S. Jackson, C. G. Enke. Impor-
tance of gas-phase proton affinities in determining the
electrospray ionization response for analytes and solvents.
J. Mass Spectrom. 2000, 35, 784.
1
882, 12, 337.
33] S. C. Hooker. The constitution of lapachic acid (lapachol)
and its derivatives. J. Chem. Soc. 1892, 61, 611.
34] T. M. Kertesz, L. H. Hall, D. W. Hill, D. F. Grant. Quantify-
ing collision induced dissociation energy for small molecule
characterization and identification. J. Am. Soc. Mass
Spectrom. 2009, 20, 1759.
[
35] A. D. Becke. A new mixing of hartree-fock and local density-
functional theories. J. Chem. Phys. 1993, 98, 1372. C. T. Lee,
W. T. Yang, R. G. Parr. Development of the Colle-Salvetti
[48] U. Koch, P. L. A. Popelier. Characterization of C-H-O
hydrogen-bonds on the basis of the charge-density. J. Phys.
Chem. 1995, 99, 9747; W. Nakanishi, S. Hayashi, K. Narahara.
Atoms-in-molecules dual parameter analysis of weak to
strong interactions: behaviors of electronic energy densities
versus laplacian of electron densities at bond critical points.
J. Phys. Chem. A 2008, 112, 13595.
[49] N. P. Lopes, C. B. W. Stark, H. Hong, P. J. Gates, J. Staunton.
A study of the effect of pH, solvent system, cone potential
and the addition of crown ethers on the formation of the
monensin protonated parent ion in electrospray mass
spectrometry. Analyst 2001, 126, 1630.
[50] N. Fabre, I. Rustan, E. de Hoffmann, J. Quetin-Leclercq.
Determination of flavone, flavonol, and flavanone
aglycones by negative ion liquid chromatography electro-
spray ion trap mass spectrometry. J. Am. Soc. Mass Spectrom.
2001, 12, 707.
[51] M. P. Patil, R. B. Sunoj. Density functional theory and
atoms-in-molecule study on the role of two-electron
stabilizing interactions in retro-Diels-Alder reaction of
cycloadducts derived from substituted cyclopentadiene
and p-benzoquinone. Org. Biomol. Chem. 2006, 4, 3923.
correlation-energy formula into
a functional of the
electron-density. Phys. Rev. B 1988, 37, 785.
[
36] R. Ditchfield, W. J. Hehre, J. A. Pople. Self-consistent
molecular-orbital methods .9. Extended gaussian-type basis
for molecular-orbital studies of organic molecules. J. Chem.
Phys. 1971, 54, 724.
[
37] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr, T. Vreven,
K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar,
J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani,
N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara,
K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,
Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox,
H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo,
J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev,
A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y.
Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg,
V. G. Zakrzewski, S. Dapprich, A. D. Daniels,
M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck,
wileyonlinelibrary.com/journal/rcm
Copyright © 2013 John Wiley & Sons, Ltd.
Rapid Commun. Mass Spectrom. 2013, 27, 816–824