Page 11 of 14
Journal of the American Chemical Society
(13) (a) Zhang, Z.; Wang, J.; Li, J.; Yang, F.; Liu, G.; Tang, W.; He,
Adv. 2015, 5, 36979. (b) Wilson, Z. E.; Brimble, M. A. A
1
2
3
4
5
6
7
8
9
W.; Fu, J.-J.; Shen, Y.-H.; Li, A.; Zhang, W.-D. Total synthesis
and stereochemical assignment of delavatine A: Rh-catalyzed
asymmetric hydrogenation of indene-type tetrasubstituted
olefins and kinetic resolution through Pd-catalyzed triflamide-
directed C–H olefincation. J. Am. Chem. Soc. 2017, 139, 5558.
(b) Recently also a formal synthesis of delavatine A was
reported, Peez, T.; Luy, J.-N.; Harms, K. Tonner, R.; Koert, U.
From Acenaphthenes to (+)-Delavatine A: Visible-Light-
Induced Ring Closure of Methyl (a-Naphthyl) Acrylates.
Chem. Eur. J. 2018, 24, 17686.
flexible asymmetric synthesis of the tetracyclic core of berkelic
acid using
a
Horner–Wadsworth–Emmons/oxa-Michael
cascade. Org. Biomol. Chem. 2010, 8, 1284. (c) Maurya, H. K.;
Vasudev, P. G.; Gupta, A. A regioselective synthesis of 2,6-
diarylpyridines. RSC Adv. 2013, 3, 12955. (d) Kumar, A.;
Singh, S. P.; Verma, D.; Kant, R.; Maulik, P. R.; Goel, A.
Unprecedented ’ring transformation-rearrangement’ of pyran-
2-ones into 5,6-dihydropyran-2-ones through insertion of
acetol. Tet. Lett. 2010, 51, 961.
(22) Goel, A.; Ram, V. J. Natural and synthetic 2H-pyran-2-ones
and their versatility in organic synthesis. Tetrahedron 2009, 65,
7865.
(14) Palani, V.; Hugelshofer, C. L.; Kevlishvili, I.; Liu, P.; Sarpong,
R. A short synthesis of delavatine A unveils new insights into
site-selective cross-coupling of 3,5-dibromo-2-pyrone. J. Am.
Chem. Soc. 2019, 141, 2652.
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
(23) For selected examples involving ring-opening 2-pyrone
derivatives with a variety of nucleophiles, see: (a) Tandon V.
K.; Maurya, H. K.; Kumar, B.; Kumar, B.; Ram, V. J. An
expeditious concise synthesis of benzo[b]pyrano[2,3-
d]oxepines and dibenzo[b,d]oxepines. Synlett 2009, 18, 2992.
(b) Fürstner, A.; Krause, H. Flexible synthesis of
metacycloprodigiosin and functional derivatives thereof. J.
Org. Chem. 1999, 64, 8281. (c) Morgan, Jr., L. R. The
formation of -hydroxy-trans, cis-muconic acid semialdehyde
in the reduction of 2-pyrone-6-carboxylic acid. J. Org. Chem.
1962, 27, 343. (d) Sun, C.-L.; Fürstner, A. Formal ring-
opening/cross-coupling reactions of 2-pyrones: Iron-catalyzed
entry into stereodefined dienyl carboxylates. Angew. Chem.
Int. Ed. 2013, 52, 13071.
(
15) (a) Hoffmann, R. W.; Swiegers, G. F., Ed. Biomimicry in
Organic Synthesis. In Bioinspiration and Biomimicry in
Chemistry; John Wiley & Sons, 2012. (b) Dewick, P. M., Ed.
nd
Medicinal Natural Products: A Biosynthetic Approach, 2 ed.;
John Wiley & Sons: Chichester, U. K.; 2002.
(
16) For selected total syntheses involving biomimetic cascade
strategy, see: (a) Piettre, S.; Heathcock, C. H. Biomimetic total
synthesis of proto-daphniphylline. Science 1990, 248, 1532.
(b) Xiong, Z.; Corey, E. J. Simple enantioselective total
synthesis of glabrescol, a chiral C -symmetric pentacyclic
2
oxasqualenoid. J. Am. Chem. Soc. 2000, 122, 9328. (c)
Vosburg, D. A.; Vanderwal, C. D.; Sorensen, E. J. A synthesis
of (+)-FR182877, featuring tandem transannular Diels–Alder
reactions inspired by a postulated biogenesis. J. Am. Chem.
Soc. 2002, 124, 4552. (d) Hugelshofer, C. L.; Magauer, T. A
bioinspired cyclization sequence enables the asymmetric total
synthesis of dictyoxetane. J. Am. Chem. Soc. 2016, 138, 6420.
17) For selected total syntheses leveraging symmetry, see: (a)
Aube, J.; Ghosh, S.; Tanol, M. Symmetry-Driven Synthesis of
Indole Alkaloids: Asymmetric Total Syntheses of (+)-
Yohimbine, (-)-Yohimbone, (-)-Yohimbane, and (+)-
Alloyohimbane. J. Am. Chem. Soc. 1994, 116, 9009. (b) Ball,
M.; Gaunt, M. J.; Hook, D. F.; Jessiman, A. S.; Kawahara, S.;
Orsini, P.; Scolaro, A.; Talbot, A. C.; Tanner, H. R.; Yamanoi,
S.; Ley, S. V. Total Synthesis of Spongistatin 1: A Synthetic
Strategy Exploiting Its Latent Pseudo-Symmetry. Angew.
Chem. Int. Ed. 2005, 44, 5433. (c) Mahapatra, S.; Carter, R. G.
Exploiting Hidden Symmetry in Natural Products: Total
Syntheses of Amphidinolides C and F. J. Am. Chem. Soc. 2013,
135, 10792. (d) Kisunzu, J. K.; Sarpong, R. Hidden Symmetry
Enables a 15-Step Total Synthesis of Pactamycin. Angew.
Chem. Int. Ed. 2013, 52, 10694. (e) Ellerbrock, P.; Armanino,
N.; Trauner, D. Biomimetic Synthesis of the Calcineurin
Phosphatase Inhibitor Dibefurin. Angew. Chem. Int. Ed. 2014,
53, 13414. (f) Wang, T.; Hoye, T. R. Diels–Alderase-free, bis-
pericyclic, [4+2] dimerization in the biosynthesis of ()-
paracaseolide A. Nat. Chem. 2015, 7, 641. (g) Ellerbrock, P.;
Armanino, N.; Ilg, M. K.; Webster, R.; Trauner, D. An eights-
step synthesis of epicolactone reveals ist biosynthetic origin.
Nat. Chem. 2015, 7, 879. (h) Park, J.; Chen, D. Y.-K. A
Desymmetrization-Based Total Synthesis of Reserpine.
Angew. Chem. Int. Ed. 2018, 57, 16152.
(24) Stephen, J. F.; Marcus, E. Reactions of dehydroacetic acid and
related pyrones with secondary amines. J. Org. Chem. 1969,
34, 2527.
(25) (a) Giri, R.; Yu, J.-Q. Synthesis of 1,2- and 1,3-dicarboxylic
acids via Pd(II)-catalyzed carboxylation of aryl and vinyl C–H
bonds. J. Am. Chem. Soc. 2008, 130, 14082. (b) Park, J.; Kim,
M.; Sharma, S.; Park, E.; Ki, A.; Lee, S. H.; Kwak, J. H.; Jung,
Y. H.; Kim, I. S. Pd(II)-catalyzed decarboxylative acylation of
phenylacetamides with -oxocarboxylic acids via C–H bond
activation. Chem. Commun. 2013, 49, 1654. (c) Liao, G. Chen,
H.-M.; Shi, B.-F. Synthesis of phthalic acid derivatives via Pd-
catalyzed alkoxycarbonylation of aromatic C–H bonds with
alkyl chloroformates. Chem. Commun. 2018, 54, 10859.
(26) For reactions of 2-pyrones with cyanide ion, see: (a) Blumberg,
L. C.; Costa, B.; Goldstein, R. Chemoselective 1,3-dipolar
cycloadditions of azomethine ylide with conjugated dienes.
Tet. Lett. 2011, 52, 872. Vogel, G. Reaction of 2-pyrones with
cyanide ion. J. Org. Chem. 1965, 30, 203.
(
+
(27) Attempts to quench the resulting carbanion with a D
source
(CD OD and D O) was met with failure as treatment of methyl
3
2
esters 22 and 23 under strongly basic conditions in the absence
of an electrophile resulted in nonspecific decomposition.
Among the investigated electrophiles, only carbon
tetrabromide (CBr ) resulted in formation of a product that
4
could be cleanly isolated and charcaterized. We believe the -
bromination of 22 and 23, leading to vinyl bromides 26 and 25,
respectively, corroborates the increased acidity oft he -vinyl
vs -proton.
(
28) (a) Rossi, R.; Bellina, F.; Lessi, M. Selective palladium-
catalyzed Suzuki–Miyaura reactions of polyhalogenated
heteroarenes. Adv. Synth. Catal. 2012, 354, 1181. (b) Fairlamb,
I. J. S.; O’Brien, C. T.; Lin, Z.; Lam, K. C. Regioselectivity in
the Sonogashira coupling of 4,6-dichloro-2-pyrone. Org.
Biomol. Chem. 2006, 4, 1213.
(29) Fairlamb, I. J. S. Regioselective (site-selective)
functionalisation of unsaturated halogenated nitrogen, oxygen
and sulfur heterocycles by Pd-catalysed cross-couplings and
direct arylation processes. Chem. Soc. Rev. 2007, 36, 1036 and
references therein.
(
18) Hugelshofer, C. L.; Magauer, T. A General Entry to
Antifeedant Sesterterpenoids: Total Synthesis of (+)-
Norleucosceptroid
A,
Norleucosceptroid
B,
and
Leucosceptroid K. Angew. Chem. Int. Ed. 2014, 53, 11351.
19) Robbins, D. W.; Hartwig, J. F. A C–H borylation approach to
Suzuki–Miyaura coupling of typically unstable 2–heteroaryl
and polyfluorophenyl boronates. Org. Lett. 2012, 14, 4266.
20) Cho, H. K.; Nishii, A.; Cho, C.-G. Preparation of 3,5-dibromo-
2-pyrone from coumalic acid. Org. Synth. 2015, 92, 148.
(21) For selected examples demonstrating opening 2-pyrones with
an alkoxide nucleophile, see the following: (a) Sahu, S. N.;
Gupta, M. K.; Singh, S.; Yadav, P.; Panwar, R.; Kumar, A.;
Ram, V. J.; Kumar, B.; Pratap, R. One pot synthesis of
tetrasubstituted thiophenes: [3+2] annulation strategy. RSC
(
(
(
30) For recent studies on site-selective cross coupling of
polyhalogenated heterocycles, see: (a) Schröter, S.; Stock, C.;
Bach, T. Regioselective cross-coupling reactions of multiple
halogenated nitrogen-, oxygen-, and sulfur-containing
ACS Paragon Plus Environment