Page 5 of 7
ACS Chemical Neuroscience
last decade. Chem. Rev. 119, 1221–1322.
(2) Mullard, A. (2016) Alzheimer amyloid hypothesis lives on.
Nat. Rev. Drug Discov. 16, 3–5.
(3) Hardy, J., Higgins, G. (1992) Alzheimer's disease: the
amyloid cascade hypothesis. Science 256, 184–185.
(4) Kepp, K. P. (2012) Bioinorganic chemistry of Alzheimer’s
disease. Chem. Rev. 112, 5193–5239.
(5) Coyle, J., Price, D., DeLong, M. (1983) Alzheimer's disease:
a disorder of cortical cholinergic innervation. Science 219,
1184–1190.
(6) Liang, C., Hsieh, M.-C., Li, N. X., Lynn, D. G. (2018)
Conformational evolution of polymorphic amyloid
assemblies. Curr. Opin. Struct. Biol. 51, 135–140.
(7) Faller, P., Hureau, C., La Penna, G. (2014) Metal ions and
intrinsically disordered proteins and peptides: From Cu/Zn
amyloid-β to general principles. Acc. Chem. Res. 47, 2252–
2259.
(8) Pithadia, A. S., Lim, M. H. (2012) Metal-associated amyloid-
β species in Alzheimer's disease. Curr. Opin. Chem. Biol. 16,
67–73.
(9) Gonzalez, P., da Costa, V. C., Hyde, K., Wu, Q., Annunziata,
O., Rizo, J., Akkaraju, G., Green, K. N. (2014) Bimodal-hybrid
heterocyclic amine targeting oxidative pathways and copper
mis-regulation in Alzheimer's disease. Metallomics 6, 2072–
2082.
(10) Rice-Evans, C. A., Miller, N. J., Paganga, G. (1996) Structure-
antioxidant activity relationships of flavonoids and phenolic
acids. Free Radic. Biol. Med. 20, 933–956.
(11) Cushnie, T. P. T., Lamb, A. J. (2005) Antimicrobial activity
of flavonoids. Int. J. Antimicrob. Agents 26, 343–356.
(12) Middleton, E., Kandaswami, C., Theoharides, T. C. (2000)
The effects of plant flavonoids on mammalian cells:
Implications for inflammation, heart Disease, and cancer.
Pharmacol. Rev. 52, 673–751.
(13) Leung, C. H., Chan, D. S. H., Yang, H., Abagyan, R., Lee, S.
M. Y., Zhu, G. Y., Fong, W. F., Ma, D. L. (2011) A natural
product-like inhibitor of NEDD8-activating enzyme. Chem.
Commun. 47, 2511-2513.
(14) Ono, K., Yoshiike, Y., Takashima, A., Hasegawa, K., Naiki,
H., Yamada, M. (2003) Potent anti-amyloidogenic and
fibril-destabilizing effects of polyphenols in vitro:
Implications for the prevention and therapeutics of
Alzheimer's disease. J. Neurochem. 87, 172–181.
(15) Onozuka, H., Nakajima, A., Matsuzaki, K., Shin, R.-W.,
Ogino, K., Saigusa, D., Tetsu, N., Yokosuka, A., Sashida, Y.,
Mimaki, Y., Yamakuni, T., Ohizumi, Y. (2008) Nobiletin, a
citrus flavonoid, improves memory impairment and Aβ
pathology in a transgenic mouse model of Alzheimer's
disease. J. Pharmacol. Exp. Ther. 326, 739–744.
potential therapeutic agents for Alzheimer's disease. Chem.
Sci. 2, 917-921.
1
2
3
4
5
6
7
8
(20) Ma, D. L., Shiu-Hin Chan, D., Pui-Yan Ma, V., Leung, K.
H., Zhong, H. J., Leung, C. H. (2012) Current advancements
in A luminescent probes and inhibitors of A aggregation.
Curr. Alzheimer Res. 9, 830-843.
(21) Lai-Fung Chan, S., Lu, L., Lung Lam, T., Yan, S. C., Leung,
C. H., Ma, D. L. (2015) A novel tetradentate ruthenium(II)
complex containing tris(2- pyridylmethyl)amine (tpa) as an
inhibitor of beta-amyloid fibrillation. Curr. Alzheimer Res.
12, 434-438.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(22) Lu, L., Zhong, H. J., Wang, M., Ho, S. L., Li, H. W., Leung,
C. H., Ma, D. L. (2015) Inhibition of beta-amyloid fibrillation
by luminescent iridium(III) complex probes. Sci. Rep. 5,
14619.
(23) Istrate, A. N., Kozin, S. A., Zhokhov, S. S., Mantsyzov, A.
B., Kechko, O. I., Pastore, A., Makarov, A. A., Polshakov,
V. I. (2016) Interplay of histidine residues of the Alzheimer’s
disease Aβ peptide governs its Zn-induced oligomerization.
Sci. Rep. 6, 21734.
(24) Ghosh, A.,
Pradhan, N.,
Bera, S.,
Datta, A.,
Krishnamoorthy, J., Jana, N. R. (2017) Inhibition and
degradation of amyloid beta (A40) fibrillation by designed
small peptide: A combined spectroscopy, microscopy, and
cell toxicity study. ACS Chem. Neurosci. 8, 718-722.
(25) Wright, J. S., Johnson, E. R., DiLabio, G. A. (2001) Predicting
the activity of phenolic antioxidants:ꢀ Theoretical method,
analysis of substituent effects, and application to major
families of antioxidants. J. Am. Chem. Soc. 123, 1173–1183.
(26) Silva, M. M., Santos, M. R., Caroço, G., Rocha, R., Justino, G.,
Mira, L. (2002) Structure-antioxidant activity relationships
of flavonoids: A re-examination. Free Radic. Res. 36, 1219–
1227.
(27) Sato, M., Murakami, K. Uno, M., Nakagawa, Y.,Katayama,
S., Akagi, K.-i., Masuda, Y., Takegoshi, K., Irie, K. (2013) Site-
specific inhibitory mechanism for amyloid β42 aggregation
by catechol-type flavonoids targeting the Lys residues. J.
Biol. Chem. 288, 23212–23224.
(28) Uriarte-Pueyo, I.,
I Calvo, M. (2011) Flavonoids as
acetylcholinesterase inhibitors. Curr. Med. Chem. 18, 5289–
5302.
(29) Wähälä, K., Hase, T. A. (1991) Expedient synthesis of
polyhydroxyisoflavones. J. Chem. Soc. Perkin Trans. 12,
3005–3008.
(30) Sang, Z., Qiang, X., Li, Y., Yuan, W., Liu, Q., Shi, Y., Ang, W.,
Luo, Y., Tan, Z., Deng, Y. (2015) Design, synthesis and
evaluation of scutellarein-O-alkylamines as multifunctional
agents for the treatment of Alzheimer's disease. Euro. J.
Med. Chem. 94, 348–366.
(31) Beck, M. W., Derrick, J. S., Kerr, R. A., Oh, S. B., Cho, W. J.,
Lee, S. J. C., Ji, Y., Han, J., Tehrani, Z. A., Suh, N., Kim, S.,
Larsen, S. D., Kim, K. S., Lee, J.-Y., Ruotolo, B. T., Lim, M. H.
(2016) Structure-mechanism-based engineering of chemical
regulators targeting distinct pathological factors in
Alzheimer’s disease. Nat. Commun. 7, 13115.
(16) Ansari, M. A.,Abdul, H. M., Joshi, G., Opii, W. O.,
Butterfield, D. A. (2009) Protective effect of quercetin in
primary neurons against Aβ(1–42): Relevance to Alzheimer's
disease. J. Nutr. Biochem. 20, 269–275.
(17) Lee, H. J., Kerr, R. A., Korshavn, K. J., Lee, J., Kang, J.,
Ramamoorthy, A., Ruotolo, B. T., Lim, M. H. (2016) Effects
of hydroxyl group variations on a flavonoid backbone
toward modulation of metal-free and metal-induced
amyloid-β aggregation. Inorg. Chem. Front. 3, 381–392.
(18) DeToma, A. S., Krishnamoorthy, J., Nam, Y., Lee, H. J.,
Brender, J. R., Kochi, A., Lee, D., Onnis, V., Congiu, C.,
Manfredini, S., Vertuani, S., Balboni, G., Ramamoorthy, A.,
Lim, M. H. (2014) Synthetic flavonoids, aminoisoflavones:
Interaction and reactivity with metal-Free and metal-
associated amyloid-β species. Chem. Sci. 5, 4851–4862.
(19) Man, B. Y. W., Chan, H. M., Leung, C. H., Chan, D. S. H.,
Bai, L. P., Jiang, Z. H., Li, H. W., Ma, D. L. (2011) Group 9
metal-based inhibitors of -amyloid (1–40) fibrillation as
(32) Eagger, S. A., Levy, R., Sahakian, B. J. (1991) Tacrine in
Alzheimer's disease. Lancet 337, 989–992.
(33) Bourne, Y., Grassi, J., Bougis, P. E., Marchot, P. (1999)
Conformational flexibility of the acetylcholinesterase
tetramer suggested by X-ray crystallography. J. Biol. Chem.
274, 30370–30376.
(34) Bitan, G., Tarus, B., Vollers, S. S., Lashuel, H. A., Condron,
M. M., Straub, J. E., Teplow, D. B. (2003) A molecular switch
in amyloid assembly:ꢀ Met35 and amyloid β-protein
oligomerization. J. Am. Chem. Soc. 125, 15359–15365.
ACS Paragon Plus Environment