Organic Letters
Letter
2004, 43 (44), 5984−5987. (i) Harmata, M.; Hong, X. J. Am. Chem.
Soc. 2003, 125 (19), 5754−5756. (j) Koep, S.; Gais, H. J.; Raabe, G. J.
Am. Chem. Soc. 2003, 125 (43), 13243−13251. (k) Bolm, C.; Martin,
M.; Simic, O.; Verrucci, M. Org. Lett. 2003, 5 (4), 427−429. (l) Bolm,
C.; Verrucci, M.; Simic, O.; Cozzi, P. G.; Raabe, G.; Okamura, H.
(10) A comprehensive version of the optimization of the reaction
conditions and all of the control reactions is displayed in the SI.
(11) For a mechanistic proposal and further experimental details, see
the SI. Electron-transfer processes between the applied photocatalyst
and nickel catalyst species cannot be ruled out.
(12) For further experimental details, see the SI.
́
Chem. Commun. 2003, No. 22, 2826−2827. (m) Bolm, C.; Simic, O. J.
(13) Due to the higher solubility of the brominated heteroarenes,
mainly DMAc was used as solvent in this part of the substrate scope.
(14) The amounts of [Ir]-Cat and [Ni-2]-Cat used in these cases
vary between 0.15−1.0 mol % and 0.20−5.0 mol %, respectively, and
are displayed for every substrate in Figure 2.
Am. Chem. Soc. 2001, 123 (16), 3830−3831. (n) Harmata, M.;
Ghosh, S. K. Org. Lett. 2001, 3 (21), 3321−3323. (o) Reggelin, M.;
Zur, C. Synthesis 2000, 2000 (1), 1−64. (p) Bolm, C.; Felder, M.;
Muller, J. Synlett 1992, 1992 (05), 439−441. (q) Johnson, C. R. Acc.
̈
Chem. Res. 1973, 6 (10), 341−347.
(15) For further experimental details, see SI.
(2) Lucking, U. Angew. Chem., Int. Ed. 2013, 52 (36), 9399−9408.
(3) (a) Babcock, J. M.; Gerwick, C. B.; Huang, J. X.; Loso, M. R.;
Nakamura, G.; Nolting, S. P.; Rogers, R. B.; Sparks, T. C.; Thomas, J.;
Watson, G. B.; Zhu, Y. Pest Manage. Sci. 2011, 67 (3), 328−334.
(b) Zhu, Y.; Loso, M. R.; Watson, G. B.; Sparks, T. C.; Rogers, R. B.;
Huang, J. X.; Gerwick, B. C.; Babcock, J. M.; Kelley, D.; Hegde, V. B.;
Nugent, B. M.; Renga, J. M.; Denholm, I.; Gorman, K.; DeBoer, G. J.;
Hasler, J.; Meade, T.; Thomas, J. D. J. Agric. Food Chem. 2011, 59 (7),
2950−2957. (c) Bacci, L.; Convertini, S.; Rossaro, B. J. Entomol.
Acarol. Res. 2018, 50 (3), 51−71.
(4) (a) Frings, M.; Bolm, C.; Blum, A.; Gnamm, C. Eur. J. Med.
Chem. 2017, 126, 225−245. (b) Sirvent, J. A.; Lucking, U.
ChemMedChem 2017, 12 (7), 487−501.
(5) (a) Bolm, C.; Hildebrand, J. P. Tetrahedron Lett. 1998, 39 (32),
5731−5734. (b) Harmata, M.; Pavri, N. Angew. Chem., Int. Ed. 1999,
38 (16), 2419−2421. (c) Bolm, C.; Hildebrand, J. P. J. Org. Chem.
2000, 65 (1), 169−175. (d) Bolm, C.; Hildebrand, J. P.; Rudolph, J.
Synthesis 2000, 2000 (07), 911−913. (e) Bolm, C.; Martin, M.;
Gibson, L. Synlett 2002, 2002 (5), 832−834. (f) Harmata, M.; Hong,
X.; Ghosh, S. K. Tetrahedron Lett. 2004, 45 (27), 5233−5236.
(g) Yongpruksa, N.; Calkins, N. L.; Harmata, M. Chem. Commun.
2011, 47 (27), 7665−7667. (h) Zhou, H.; Chen, W.; Chen, Z. Org.
Lett. 2018, 20 (9), 2590−2594. (i) Yang, Q.; Choy, P. Y.; Zhao, Q.;
Leung, M. P.; Chan, H. S.; So, C. M.; Wong, W.-T.; Kwong, F. Y. J.
Org. Chem. 2018, 83 (18), 11369−11376. (j) Cho, G. Y.; Remy, P.;
Jansson, J.; Moessner, C.; Bolm, C. Org. Lett. 2004, 6 (19), 3293−
3296. (k) Sedelmeier, J.; Bolm, C. J. Org. Chem. 2005, 70 (17), 6904−
6906. (l) Correa, A.; Bolm, C. Adv. Synth. Catal. 2007, 349 (17−18),
́
́
2673−2676. (m) Mace, Y.; Pegot, B.; Guillot, R.; Bournaud, C.;
Toffano, M.; Vo-Thanh, G.; Magnier, E. Tetrahedron 2011, 67 (39),
7575−7580. (n) Liu, Z. J.; Vors, J. P.; Gesing, E. R. F.; Bolm, C. Green
Chem. 2011, 13 (1), 42−45. (o) Moessner, C.; Bolm, C. Org. Lett.
2005, 7 (13), 2667−2669. (p) Vaddula, B.; Leazer, J.; Varma, R. S.
Adv. Synth. Catal. 2012, 354 (6), 986−990. (q) Kim, J.; Ok, J.; Kim,
S.; Choi, W.; Lee, P. H. Org. Lett. 2014, 16 (17), 4602−4605.
(r) Zhu, H.; Teng, F.; Pan, C.; Cheng, J.; Yu, J.-T. Tetrahedron Lett.
2016, 57 (22), 2372−2374. (s) Jiang, Y.; You, Y.; Dong, W.; Peng, Z.;
Zhang, Y.; An, D. J. Org. Chem. 2017, 82 (11), 5810−5818.
(t) Correa, A.; Bolm, C. Adv. Synth. Catal. 2008, 350 (3), 391−394.
̈
(6) Wimmer, A.; Konig, B. Adv. Synth. Catal. 2018, 360 (17), 3277−
3285.
̈
(7) Lammermann, H.; Sudau, A.; Rackl, D.; Weinmann, H.; Collins,
K.; Wortmann, L.; Candish, L.; Hog, D. T.; Meier, R. Synlett 2018, 29
(20), 2679−2684.
(8) (a) Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.; Evans, R. W.;
MacMillan, D. W. C. Nature Reviews Chemistry 2017, 1, 0052.
(b) Terrett, J. A.; Cuthbertson, J. D.; Shurtleff, V. W.; MacMillan, D.
W. C. Nature 2015, 524 (7565), 330−334. (c) Tellis, J. C.; Primer, D.
N.; Molander, G. A. Science 2014, 345 (6195), 433−436. (d) Zuo, Z.;
Ahneman, D. T.; Chu, L.; Terrett, J. A.; Doyle, A. G.; MacMillan, D.
W. C. Science 2014, 345 (6195), 437−440.
(9) (a) Oderinde, M. S.; Jones, N. H.; Juneau, A.; Frenette, M.;
Aquila, B.; Tentarelli, S.; Robbins, D. W.; Johannes, J. W. Angew.
Chem., Int. Ed. 2016, 55 (42), 13219−13223. (b) Corcoran, E. B.;
Pirnot, M. T.; Lin, S.; Dreher, S. D.; DiRocco, D. A.; Davies, I. W.;
Buchwald, S. L.; MacMillan, D. W. C. Science 2016, 353 (6296), 279−
283. (c) Kim, T.; McCarver, S. J.; Lee, C.; MacMillan, D. W. C.
Angew. Chem., Int. Ed. 2018, 57 (13), 3488−3492.
E
Org. Lett. XXXX, XXX, XXX−XXX