RSC Advances
form H and NiO (Fig. 7, reaction d), at this time, the NiO
Paper
2
8 D. A. Bulushev, S. Beloshapkin, P. E. Plyusnin, Y. V. Shubin,
V. I. Bukhtiyarov, S. V. Korenev and J. R. Ross, J. Catal., 2013,
299, 171–180.
9 M. Grasemann and G. Laurenczy, Energy Environ. Sci., 2012,
5, 8171–8181.
38
catalytic cycle is completed, returning to the initial state. The
H generated by the decomposition of formic acid was activated
2
0
by Ni and hydrogenated with vanillin to form HMP (Fig. 7,
reaction e), and HMP was further hydrogenated to form MMP
39,40
(Fig. 7, reaction f).
The experimental results showed that the 10 C. Hu, J. K. Pulleri, S. W. Ting and K. Y. Chan, Int. J. Hydrogen
condensation reaction could be greatly reduced (Fig. 7, reaction
g) when the hydrogenation reaction proceeded rapidly (Fig. 7, 11 M. O. Bengoechea, A. Hertzberg, N. Mileti ´c , P. L. Arias and
reaction e and f). Under the premise that hydrogenation and T. Barth, J. Anal. Appl. Pyrolysis, 2015, 113, 713–722.
condensation are competing reactions, improving the hydro- 12 C. Pu, J. Zhang, G. Chang, Y. Xiao, X. Ma, J. Wu and X. Yang,
Energy, 2014, 39, 381–390.
genation efficiency is an effective way to reduce condensation
side reactions.
Carbon, 2020, 159, 451–460.
13 L. Wang, B. Zhang, X. Meng, D. S. Su and F. S. Xiao,
ChemSusChem, 2014, 7, 1537–1541.
41,42
1
4 R. Nie, X. Peng, H. Zhang, X. Yu, X. Lu, D. Zhou and Q. Xia,
Catal. Sci. Technol., 2017, 7, 627–634.
Conclusions
Herein, the Ni–Co–P/HAP amorphous alloy catalyst was 15 A. Jia, X. Yao, L. Feng, Z. Ma, F. Li and Y. Wang, Eur. J. Inorg.
synthesized by impregnation-chemical reduction method, and Chem., 2020, 13, 1184–1191.
it exhibits good catalytic activity for in situ HDO reaction of 16 W. Wang, Y. Yang, H. Luo and W. Liu, React. Kinet., Mech.
vanillin with formic acid as the hydrogen source. The conver- Catal., 2010, 101, 105–115.
sion of vanillin could be high to 97.86% with MMP selectivity of 17 F. Brandi, M. B ¨a umel, V. Molinari, I. Shekova, I. Lauermann,
3.97%, under optimized reaction conditions of 2 mmol T. Heil and M. Al-Naji, Green Chem., 2020, 22, 2755–2766.
9
vanillin, 0.06 g catalyst, 20 mL isopropanol solvent, m(formic 18 M. H. Qiao, S. H. Xie, W. L. Dai and J. F. Deng, Catal. Lett.,
ꢀ
acid) : m(vanillin) ¼ 2 : 1, 200 C and 300 min. Ni–Co–P/HAP, as
2001, 71, 187–192.
a dual-function catalyst, can promote the decomposition of 19 G. Xie, W. Sun and W. Li, Catal. Commun., 2008, 10, 333–335.
formic acid and catalyze the in situ HDO reaction of vanillin, 20 M. H. Lin, B. Zhao and Y. W. Chen, Ind. Eng. Chem. Res.,
which provides a new catalytic way for the hydrogenation of
biomass using formic acid as a hydrogen source. Mechanism 21 J. Legrand, A. Taleb, S. Gota, M. J. Guittet and C. Petit,
studies have shown that the rapid hydrogenation of carboca- Langmuir, 2002, 18, 4131–4137.
2009, 48, 7037–7043.
tions and HMP can effectively reduce the occurrence of 22 L. Wang, W. Liu and X. Wang, Tribol. Lett., 2009, 37, 381–387.
condensation side reactions, which is the key to further 23 W. Zhao, A. D. Doyle, S. E. Morgan, M. Bajdich, J. K. Nørskov
improving the selectivity of the target product MMP.
and C. T. Campbell, J. Phys. Chem. C, 2017, 121, 28001–28006.
4 T. M. Huynh, U. Armbruster, M. M. Pohl, M. Schneider,
J. Radnik, D. L. Hoang and A. Martin, ChemCatChem, 2014,
2
Conflicts of interest
6
, 1940–1951.
25 Z. Zhu, J. Ma, L. Xu, L. Xu, H. Li and H. Li, ACS Catal., 2012,
, 2119–2125.
6 J. H. Shen and Y. W. Chen, J. Mol. Catal. A: Chem., 2007, 273,
65–276.
The authors declare no conicts of interest.
2
2
Acknowledgements
2
This work was nancially supported by the Natural Science 27 Z. Li, H. Li, L. Wang, T. Liu, T. Zhang, G. Wang and G. Xie,
Foundation of Hebei Province (No. B2018202293).
Int. J. Hydrogen Energy, 2014, 39, 14935–14941.
8 W. Y. Wang, Y. Q. Yang, J. G. Bao and H. A. Luo, Catal.
Commun., 2009, 11, 100–105.
9 F. Li, J. Liang, K. Wang, B. Cao, W. Zhu and H. Song, Can. J.
Chem. Eng., 2017, 95, 2012–2017.
2
2
References
1
M. Saidi, F. Samimi, D. Karimipourfard, T. Nimmanwudipong,
B. C. Gates and M. R. Rahimpour, Energy Environ. Sci., 2014, 7, 30 W. Wang, Y. Yang, H. Luo, H. Peng, B. He and W. Liu, Catal.
03–129. Commun., 2011, 12, 1275–1279.
X. Li, G. Chen, C. Liu, W. Ma, B. Yan and J. Zhang, Renewable 31 J. Reyes, E. Arriola, J. A. Hern ´a ndez and G. A. Fuentes, Appl.
Sustainable Energy Rev., 2017, 71, 296–308. Catal., A, 2015, 497, 211–215.
P. R. Patwardhan, R. C. Brown and B. H. Shanks, 32 L. Zhang, Z. Xin, Z. Liu, G. Wei, Z. Li and Y. Ou, Renewable
ChemSusChem, 2011, 4, 1629–1636.
Energy, 2020, 147, 695–704.
Y. Y. Wang, L. L. Ling and H. Jiang, Green Chem., 2016, 18, 33 R. Fan, C. Chen, M. Han, W. Gong, H. Zhang, Y. Zhang and
1
2
3
4
4
032–4041.
G. Wang, Small, 2018, 14, 1801953.
34 M. J. Hidajat, A. Riaz and J. Kim, Chem. Eng. J., 2018, 348,
799–810.
5
6
H. Jiang, J. Chem. Res., 2019, 37, 761–763.
F. Huang, W. Li, Q. Lu and X. Zhu, Chem. Eng. Technol., 2010,
3
3, 2082–2088.
35 K. Mori, T. Taga and H. Yamashita, ACS Catal., 2017, 7,
3147–3151.
7
J. Du, J. Zhang, Y. Sun, W. Jia, Z. Si, H. Gao and L. Lin, J.
Catal., 2018, 368, 69–78.
11002 | RSC Adv., 2021, 11, 10996–11003
© 2021 The Author(s). Published by the Royal Society of Chemistry