February 2011
213
Therefore, it was conceivable that NO-NIF diminished the
cytotoxicity induced by Fe-NTA because, as we demon-
strated, NO-NIF possessed scavenging activity due not only
to lipid hydroperoxide (Fig. 2) but also ROS (Fig. 7).
J. Pharm. Pharmacol., 39, 1044—1046 (1987).
7) Nunez-Vergara L. J., Bollo S., Fuentealba J., Sturm J. C., Squella J. A.,
Pharm. Res., 19, 522—529 (2002).
8) Stasko A., Brezova V., Biskupic S., Ondrias K., Misik V., Free Radic.
Biol. Med., 17, 545—556 (1994).
1
1
As expected, pretreatment with NO-NIF completely pre- 19) de Vries H., Beijersbergen van Henegouwen G. M., J. Photochem.
vented the Fe-NTA-induced LDH release from PC12 cells,
but nifedipine did not attenuate the cell injury, suggesting
that the antioxidative activity of NO-NIF is superior to that
of its mother compound, nifedipine. In 1992, Mak et al., re-
Photobiol. B, 43, 217—221 (1998).
0) Bauer V., Rekalov V. V., Juranek I., Gergel D., Bohov P., Br. J. Pharma-
col., 115, 871—874 (1995).
2
2
1) Diaz-Araya G., Godoy L., Naranjo L., Squella J. A., Letelier M. E.,
Nunez-Vergara L. J., Gen. Pharmacol., 31, 385—391 (1998).
ported that lipophilic DHPs exhibited antioxidant activity 22) Ohkubo T., Noro H., Sugawara K., J. Pharm. Biomed. Anal., 10, 67—
and that the mechanism might be mediated by membrane
70 (1992).
14,60)
23) Fujii H., Berliner L. J., Magn. Reson. Med., 42, 691—694 (1999).
4) Sanguinetti M. C., Kass R. S., Biophys. J., 45, 873—880 (1984).
5) Gurney A. M., Nerbonne J. M., Lester H. A., J. Gen. Physiol., 86,
lipid antiperoxidation.
However, our results indicate that
2
2
nifedipine seems to have less potent antioxidative activity
14,61)
than other DHPs.
Furthermore, recent studies demon-
3
53—379 (1985).
strated that azelnidipine, a kind of DHP, inhibited or scav- 26) Hayase N., Inagaki S., Abiko Y., J. Pharmacol. Exp. Ther., 275, 813—
4
3,62,63)
8
21 (1995).
enged ROS in both in vivo and in vitro systems.
2
7) Yanez C., Lopez-Alarcon C., Camargo C., Valenzuela V., Squella J. A.,
Nunez-Vergara L. J., Bioorg. Med. Chem., 12, 2459—2468 (2004).
8) Mi sˇ ík V., Stasko A., Gergel D., Ondrias K., Mol. Pharmacol., 40,
435—439 (1991).
In conclusion, we found that NO-NIF accumulated in the
cell membrane and was partially but gradually converted to
stable NO-NIF radicals. These compounds may participate in
2
inhibition of lipid peroxidation of the lipid membrane by di- 29) Akai K., Tsuchiya K., Tokumura A., Kogure K., Ueno S., Shibata A.,
Tamaki T., Fukuzawa K., Free Radic. Res., 38, 951—962 (2004).
0) Mizuta Y., Masumizu T., Kohno M., Mori A., Packer L., Biochem.
Mol. Biol. Int., 43, 1107—1120 (1997).
1) Souchard J. P., Barbacanne M. A., Margeat E., Maret A., Nepveu F.,
Arnal J. F., Free Radic. Res., 29, 441—449 (1998).
rect interaction with lipid hydroperoxide and dismutation of
3
lipid radicals, and may suppress ROS production. Because
23)
NO-NIF is one of the metabolites of nifedipine in vivo and
3
its intrinsic toxicity was less than or equal to that of nifedip-
ine in PC12 cells (Fig. 8), we expect that NO-NIF may be a 32) Auerbach B. J., Kiely J. S., Cornicelli J. A., Anal. Biochem., 201,
3
75—380 (1992).
3) Somers P. K., Medford R. M., Saxena U., Free Radic. Biol. Med., 28,
532—1537 (2000).
4) Uchiyama M., Suzuki Y., Fukuzawa K., Yakugaku Zasshi, 88, 678—
83 (1968).
candidate for an antioxidant drug to protect the cell mem-
brane.
3
3
3
1
Acknowledgment The authors wish to thank Eri Kitayama for her tech-
nical assistance. This work was partially supported by Grant from regional
innovation cluster program.
6
5) Gorinstein S., Martin-Belloso O., Katrich E., Lojek A., Ciz M.,
Gligelmo-Miguel N., Haruenkit R., Park Y. S., Jung S. T., Trakhten-
berg S., J. Nutr. Biochem., 14, 154—159 (2003).
References
36) Hasegawa T., Bando A., Tsuchiya K., Abe S., Okamoto M., Kirima K.,
Ueno S., Yoshizumi M., Houchi H., Tamaki T., Biochim. Biophys.
Acta, 1670, 19—27 (2004).
1)
Simon A., Gariepy J., Moyse D., Levenson J., Circulation, 103,
949—2954 (2001).
2
2)
Poole-Wilson P. A., Lubsen J., Kirwan B. A., van Dalen F. J., Wagener
G., Danchin N., Just H., Fox K. A., Pocock S. J., Clayton T. C., Motro
M., Parker J. D., Bourassa M. G., Dart A. M., Hildebrandt P., Hjalmar-
son A., Kragten J. A., Molhoek G. P., Otterstad J. E., Seabra-Gomes
R., Soler-Soler J., Weber S., Lancet, 364, 849—857 (2004).
37) Yamagishi S., Nakamura K., Matsui T., Curr. Med. Chem., 15, 172—
177 (2008).
38) Kitakaze M., Asanuma H., Takashima S., Minamino T., Ueda Y.,
Sakata Y., Asakura M., Sanada S., Kuzuya T., Hori M., Circulation,
101, 311—317 (2000).
3
)
)
Yui Y., Sumiyoshi T., Kodama K., Hirayama A., Nonogi H., Kanma-
tsuse K., Origasa H., Iimura O., Ishii M., Saruta T., Arakawa K.,
Hosoda S., Kawai C., Hypertens. Res., 27, 449—456 (2004).
Shinoda E., Yui Y., Kodama K., Hirayama A., Nonogi H., Haze K.,
Sumiyoshi T., Hosoda S., Kawai C., Hypertension, 45, 1153—1158
39) Lichtlen P. R., Hugenholtz P. G., Rafflenbeul W., Hecker H., Jost S.,
Deckers J. W., Lancet, 335, 1109—1113 (1990).
40) Matsumori A., Nunokawa Y., Sasayama S., Life Sci., 67, 2655—2661
(2000).
41) Fukuo K., Yang J., Yasuda O., Mogi M., Suhara T., Sato N., Suzuki T.,
Morimoto S., Ogihara T., Circulation, 106, 356—361 (2002).
42) Lupo E., Locher R., Weisser B., Vetter W., Biochem. Biophys. Res.
Commun., 203, 1803—1808 (1994).
43) Naito Y., Shimozawa M., Manabe H., Nakabe N., Katada K., Kokura
S., Yoshida N., Ichikawa H., Kon T., Yoshikawa T., Eur. J. Pharmacol.,
546, 11—18 (2006).
4
(2005).
5
6
)
)
Ding Y., Vaziri N. D., J. Pharmacol. Exp. Ther., 292, 606—609 (2000).
Taddei S., Virdis A., Ghiadoni L., Sudano I., Salvetti A., Curr. Hyper-
tens. Rep., 2, 64—70 (2000).
Berkels R., Egink G., Marsen T. A., Bartels H., Roesen R., Klaus W.,
Hypertension, 37, 240—245 (2001).
Brovkovych V. V., Kalinowski L., Muller-Peddinghaus R., Malinski T.,
Hypertension, 37, 34—39 (2001).
Verhaar M. C., Honing M. L., van Dam T., Zwart M., Koomans H. A.,
Kastelein J. J., Rabelink T. J., Cardiovasc. Res., 42, 752—760 (1999).
7)
8)
9)
44) Sugawara H., Tobise K., Onodera S., Biochem. Pharmacol., 47, 887—
892 (1994).
45) Janero D. R., Burghardt B., Biochem. Pharmacol., 38, 4344—4348
(1989).
1
0) Sugano M., Tsuchida K., Makino N., J. Cardiovasc. Pharmacol., 40,
46—152 (2002).
46) Ondrias K., Misik V., Stasko A., Gergel D., Hromadova M., Biochim.
Biophys. Acta, 1211, 114—119 (1994).
1
1
1) Yamasaki K., Aoki M., Makino H., Hashiya N., Shimizu H., Ohishi
47) Sullivan A. B., J. Org. Chem., 31, 2811—2817 (1966).
48) Floyd R. A., Soong L. M., Stuart M. A., Reigh D. L., Arch. Biochem.
Biophys., 185, 450—457 (1978).
49) Mason R. P., Kalyanaraman B., Tainer B. E., Eling T. E., J. Biol.
Chem., 255, 5019—5022 (1980).
50) Sammartano L. J., Malejka-Giganti D., Chem. Biol. Interact., 77, 63—
79 (1991).
51) Abe S., Kirima K., Tsuchiya K., Okamoto M., Hasegawa T., Houchi
H., Yoshizumi M., Tamaki T., Chem. Pharm. Bull., 52, 186—191
(2004).
M., Ogihara T., Morishita R., J. Hum. Hypertens., 18, 701—705
(
2004).
2) Himmel H. M., Whorton A. R., Strauss H. C., Hypertension, 21,
12—127 (1993).
3) Sugawara H., Tobise K., Kikuchi K., Hypertens. Res., 19, 223—228
1996).
4) Mak I. T., Zhang J., Weglicki W. B., Pharmacol. Res., 45, 27—33
2002).
1
1
1
1
(
(
15) Yamagishi S., Nakamura K., Med. Hypotheses., 68, 565—567 (2007).
16) Majeed I. A., Murray W. J., Newton D. W., Othman S., Al-Turk W. A.,
52) Folcik V. A., Cathcart M. K., J. Lipid Res., 35, 1570—1582 (1994).