O. Hernout et al. / Bioorg. Med. Chem. Lett. 17 (2007) 5758–5762
5761
1
7
that need to be monitored in patients (15–50 mg/L) are
within the same molar range, these analogues could be
used as potential receptors for FTIR-ATR-based detec-
tion of vancomycin in the clinics. 6-Aminocaproyl-D-
Ala-D-Ser derivatives (3) could provide an alternative
if a less tight binding was necessary to obtain faster
and more complete dissociation in washout-phases.
Since the Boc-compounds are easily N-deprotected for
2H); 3.04 (t, 2H, J = 7.5 Hz); 4.18 (q, J = 7.5 Hz, 1H); 4.29
(
1
q, J = 7.5 Hz, 1H). C NMR (75 MHz, CDCl
3
3
) d 181.4;
1
2
79.3; 176.7; 160.9; 83.3; 52.8; 51.9; 42.3; 37.7; 30.2; 27.9;
+
31 3 6-
7.4; 22.4; 19.7; 19.1. HRMS (ES ) calcd for C17H N O
+
1
Na [M+Na] 396.2111: found 396.2107. (3a) H NMR
300 MHz, D O) d 1.20–1.66 (m, 18H); 2.28 (t, J = 7.5 Hz,
H); 3.03 (t, J = 7.5 Hz, 2H); 3.86 (t, J = 4.7 Hz, 2H);
(
2
2
4
1
13
.29–4.41 (m, 2H). C NMR (75 MHz, D
77.4; 177.3; 160.9; 83.3; 64.2; 58.6; 52.0; 42.3; 37.8; 31.1;
2
O) d 179.4;
3
+
further linking to germanium devices, they are cur-
rently used for the effective development of a vancomy-
cin biosensor for medical applications.
30.2; 27.9; 27.4; 19.2. HRMS (ES ) calcd for C H N O
17 31 3 7-
+
1
Na [M+Na] 412.2060: found 412.2049. (2b) H NMR
(300 MHz, D O) d 1.17–1.61 (m, 12H); 1.95 (s, 3H); 2.27
t, J = 6.9 Hz, 2H); 3.11 (t, J = 6.9 Hz, 2H); 4.14 (q,
2
(
1
3
J = 5.8 Hz, 1H); 4.32 (q, J = 5.4 Hz, 1H). C NMR
75 MHz, D O) d 180.0; 177.6; 175.0; 174.7; 51.3; 50.3;
0.1; 36.0; 28.7; 26.0; 25.7; 22.7; 18.1; 17.4. HRMS (ES )
(
4
2
Acknowledgments
+
+
calcd for C14
3
H
25
3
N O
5
Na [M+Na] 338.1692: found
We thank J.L. Habib-Jiwan for help in the MS studies.
J.M. is Senior Research Associate of the Belgian Fonds
National de la Recherche Scientifique, and S.C. benefi-
ciary of a First Entreprise programme of the R e´ gion
Wallonne. This work was supported by the Region
Wallonne (MED-ATR project, Contract Nos.
1
38.1690. (3b) H NMR (300 MHz, D O) d 1.23–1.69
2
(
m, 9H); 1.96 (s, 3H); 2.28 (t, J = 7.5 Hz, 2H); 3.14 (t,
J = 7.3 Hz, 2H); 3.79–3.96 (m, 2H); 4.29–4.45 (m, 2H).
+
HRMS (ES ) calcd for C H N O Na [M+Na]
+
1
4
25
3
6
354.1641: found 354.1642.
All the experimental protocols, for intermediates and final
products, with structural characterisations and figures of
0
516040-0516263-0516264-0516265).
1
13
selected H and C NMR spectra are available as
Supporting Information.
1. We used Waters equipment (HPLC system 2690, diode
1
Supplementary data
ꢂ
array detector 996, Millenium 32 program) and Symme-
try Shield
TM
RP C18 column from Waters (4.6 · 100 mm;
5 lm). The analysis conditions are as follows: mobile
phase = acetonitrile and ammonium acetate buffer, 70
mM, pH 5.0; gradient from 5% CH CN + 95% aqueous
3
buffer to 95% CH CN + 5% aqueous buffer; flow
3
rate = 1 mL/min; T = 20 ꢁC; injected volume = 10 lL;
analysis time = 20 min; UV detection = 280 nm.
2. Vancomycin:2b complex: m/z = 1762.87 (vancomy-
References and notes
1
1
. (a) Kumar, P.; Agrawal, S. K.; Misra, A.; Gupta, K. C.
Bioorg. Med. Chem. Lett. 2004, 14, 1097; (b) Lahiri, J.;
Isaacs, L.; Tien, J.; Withesides, G. M. Anal. Chem. 1999,
cine + 2b-2H = C80
cine–CO –H); 943.87 (trimer of 2b); 629.02 (dimer of
2b); 314.22 (2b) (see Fig. 1).
Vancomycin:1 complex: m/z = 1776.96 (Vanco + 1-2H =
C H100Cl N O29); 1318.83 (tetramer of 1); 988.93 (tri-
80 2 13
mer of 1); 659.17 (dimer of 1); 329.26 (1) (spectrum not
shown).
2 12
H100Cl N O29); 1404.09 (vancomy-
2
7
1, 777; (c) Cooper, M. A.; Fiorini, M. T.; Abell, C.;
Williams, D. H. Bioorg. Med. Chem. Lett. 2000, 8, 2609;
d) Leech, D. Chem. Soc. Rev. 1994, 23, 205; (e) Andree-
(
scu, S.; Sadik, O. A. Pure Appl. Chem. 2004, 76, 861.
. Liao, W.; Wei, F.; Liu, D.; Qian, M. X.; Yuan, G.; Zhao,
X. S. Sensors and Actuators B 2006, 114, 445.
. (a) Marchand-Brynaert, J.; Goormaghtigh, E.; Hombl e´ ,
F.; Vou e´ , M.; De Coninck, J., 2002, PCT WO
2
3
13. Samples were plated on tryptic soy agar (TSA) after
appropriate dilutions, and incubated for 24 h at 37 ꢁC.
Colonies were enumerated using a Gel Doc 2000 appara-
tus (Bio-Rad laboratories, Hercules, CA) operated with
Quantity One software (Bio-Rad Laboratories). The
actual number of colonies counted was typically between
200 and 800, and was never less than 80. See Carryn, S.;
Van de Velde, S.; Van Bambeke, F, Mingeot-Leclercq,
M.-P.; Tulkens, P.M. J. Infect. Dis. 2004, 189, 2101 and
Barcia-Macay, M.; Lemaire, S.; Mingeot-Leclercq, M. P.;
Tulkens, P. M.; Van Bambeke, F. J Antimicrob Chemother
2006, 58, 1177 for details and validation.
0
2/056018A1; (b) Devouge, S.; Salvagnini, C.;
Marchand-Brynaert, J. Bioorg. Med. Chem. Lett. 2005,
5, 3252; (c) Vou e´ , M.; Goormaghtigh, E.; Hombl e´ , F.;
1
Marchand-Brynaert, J.; Conti, J.; Devouge, S.; De
Coninck, J. Langmuir 2007, 23, 949.
4
. (a) Begg, E. J.; Barclay, M. L.; Kirkpatrick, C. M. Br. J.
Clin. Pharmacol. 2001, 52, 35S; (b) Davani, S.; Muret, P.;
Royer, B.; Hoen, B.; Kantelip, J. P. Ann. Biol. Clin.
(
Paris) 2002, 60, 655.
. Williams, D. H. Nat. Prod. Rep. 1996, 13, 469.
14. The ordinate shows the variation in the number of viable
bacteria after 5 h of incubation compared to the original
inoculum (horizontal dotted line). Negative values indi-
cate bacterial killing due to the action of vancomycin (the
values of the negative plateaus are similar to what was
observed with vancomycin alone [not shown]). Positive
values correspond to bacterial growth due to the decreased
efficacy of vancomycin in the presence of the tested
compounds (the values of the positive plateaus are similar
to what was observed in the absence of vancomycin [not
shown]. Curves were generated by fitting a variable slope
sigmoidal dose-response equation using GrapPad Prism
(version 4.03, GraphPad Software Inc., San Diego, CA) to
the experimental points. EC50 values (shown on Table 1)
5
6
. Gilbert, Y.; Deghorain, M.; Wang, L.; Xu, B.; Pollheimer,
P. D.; Gruber, H. J.; Errington, J.; Hallet, B.; Haulot, X.;
Verbelen, C.; Hols, P.; Dufr eˆ ne, Y. F. Nano Lett. 2007, 7,
796.
. Evers, S.; Quintiliani, R., Jr.; Courvalin, P. Microb. Drug
Resist. 1996, 2, 219.
. Folena-Wasserman, G.; Sitrin, R. D.; Chapin, F.; Snader,
K. M. J. Chromatogr. 1987, 392, 225.
. Montalbetti, C. A. G.; Falque, V. Tetrahedron 2005, 61,
7
8
9
1
0827.
0. Spectral characteristics of final products. (2a) H NMR
300 MHz, D O) d 1.09–1.67 (m, 21H); 2.27 (t, J = 7.5 Hz,
1
1
(
2