10.1002/anie.202009989
Angewandte Chemie International Edition
COMMUNICATION
might be associated with the formation of palladium black in the
course of the reaction. The addition of even small amounts of
organic solvents proved fruitless because the aqua complex
preferably undergoes water exchange reactions with these
displays high durability, high Lewis acidity, and high levels of
enantioselection through electrophilic palladation. The power of
the designed complex LPd(OTf)2 was shown to manifest
exclusively in water through the robust and enantiocontrolled
organic solvents and loses the intended performance (Table S1). functionalization of indole C–H bond, via an efficient and
These results underscore the essential use of water as a
reaction medium. The palladium complex was also applicable to
the enantioenriched formation of a fluorinated tertiary carbon
stereocenter despite a solid-solid reaction (entry 13). The
reaction with indoles substituted with electron-donating or
electron-withdrawing groups proceeded smoothly with high
enantioselectivities (entries 15–21). Noteworthy is the tolerance
of bromo groups on indole under our catalysis (entry 21). In
addition, our catalysis was applicable to challenging,
enantioselective C2-alkylation of a putative pyrrolylpalladium
species (Scheme S2).
operationally simple protocol. Noteworthily, substrates are
reacted in a highly enantioselective manner although immiscible
with water (Type IIIa reaction). The design represents a
potentially powerful method to transform highly active
organometallic intermediates in
a
highly enantioselective
manner under mild reaction conditions.
Acknowledgements
This work was supported by
a Grant-in-Aid for Science
Research (JP19H05288 and in part JP20K15262 to TK,
JP15H05698 to SK) from the Japan Society for the Promotion of
Science (JSPS).
Table 3. Substituent effects.
H
LPd(OTf)2
(2.5 mol%)
Solvent, rt, 3 h
R2
Keywords: asymmetric catalysis • Lewis acids • reaction in
O
+
O
R2
water • cationic palladium • aqua complex
N
N
R1
H
H
R1
1
2
3
[1]
For representative examples of precious metals including asymmetric
reactions, see: a) R. Gauthier, M. Mamone, J.-F. Paquin, Org. Lett.
2019, 21, 9024-9027; b) T. Kuremoto, T. Yasukawa, S. Kobayashi, Adv.
Synth. Catal. 2019, 361, 3698-3703; c) S. Ostrowska, J. Lorkowski, M.
Kubicki, C. Pietraszuk, ChemCatChem 2016, 8, 3580-3583; d) T.
Nishimura, A. Noishiki, Y. Ebe, T. Hayashi, Angew. Chem. Int. Ed. 2013,
52, 1777-1780; e) Z. Liu, P. Gu, M. Shi, P. McDowell, G. Li, Org. Lett.
2011, 13, 2314-2317; f) Z. Liu, P. Gu, M. Shi, Chem. Eur. J. 2011, 17,
5796-5799; g) M. Sodeoka, Y. Hamashima, Chem. Commun. 2009,
5787-5798; h) Y. Hamashima, N. Sasamoto, N. Umebayashi, M.
Sodeoka, Chem. Asian J. 2008, 3, 1443-1455; i) G. Liu, X. Lu, J. Am.
Chem. Soc. 2006, 128, 16504-16505; j) A. Kina, H. Iwamura, T.
Hayashi, J. Am. Chem. Soc. 2006, 128, 3904-3905; k) Y. Hamashita, D.
Hotta, N. Umebayashi, Y. Tsuchiya, T. Suzuki, M. Sodeoka, Adv. Synth.
Catal. 2005, 347, 1576-1586; l) Y. Hamashima, M. Sodeoka, Chem.
Rec. 2004, 4, 231-242; m) T. Hayashi, M. Takahashi, Y. Takaya, M.
Ogasawara, J. Am. Chem. Soc. 2002, 124, 5052-5058; n) Y.
Hamashima, D. Hotta, M. Sodeoka, J. Am. Chem. Soc. 2002, 124,
11240-11241; o) E. Hagiwara, A. Fujii, M. Sodeoka, J. Am. Chem. Soc.
1998, 120, 2474-2475; p) M. Sodeoka, R. Tokunoh, F. Miyazaki, E.
Hagiwara, M. Shibasaki, Synlett 1997, 463-466.
(1.2 equiv)
Entry
1
R1
1
R2
R3
2
3
Yield (%)[a] Ee (%)[b]
–
1a Ph
Me 2a 3aa 97
Me 2b 3ab 99
90
92
88
90
90
89
82
93
84
85
87
78
78
84
89
84
87
80
87
81
81
2[f]
–
1a 4-MeC6H4
3
–
1a 4-MeOC6H4 Me 2c 3ac 95
1a 4-CF3C6H4 Me 2d 3ad 90
4[c]
–
5[c]
–
1a 4-FC6H4
1a 4-ClC6H4
Me 2e 3ae 86
Me 2f 3af 82
6[d]
–
7[e,f]
8[c]
–
1a 4-NO2C6H4 Me 2g 3ag 93
–
1a 2-thienyl
1a 2-furyl
Me 2h 3ah 94
9[e,f]
10[c]
11[e,f]
12[e,f]
13[c,f]
14[e,f]
15[e]
16
–
Me 2i
3ai
3aj
92
37
–
1a 2-ferrocenyl Me 2j
[2]
For representative examples of nonprecious metals including
asymmetric reactions, see: a) M. H. Abdellattif, M. Mokhtar, Catalysts
2018, 8, 133-148; b) S. Kobayashi, T. Endo, T. Yoshino, U. Schneider,
M. Ueno, Chem. Asian J. 2013, 8, 2033-2044; c) T. Kitanosono, T.
Ollevier, S. Kobayashi, Chem. Asian J. 2013, 8, 3051-3062; d) S.
Kobayashi, T. Kitanosono, M. Ueno, Synlett 2010, 2033-2036; e) J. S.
Fossey, R. Matsubara, H. Kiyohara, S. Kobayashi, Inorg. Chem. 2008,
47, 781-783; f) M. Hatano, T. Ikeno, T. Miyamoto, K. Ishihara, J. Am.
Chem. Soc. 2005, 127, 10776-10777; g) T. Kawabata, M. Kato, T.
Mizugaki, K. Ebitani, K. Kaneda, Chem. Eur. J. 2004, 11, 288-297; h) Y.
Yamashita, H. Ishitani, H. Shimizu, S. Kobayashi, J. Am. Chem. Soc.
2002, 124, 3292-3302; i) S. Kanemasa, Y. Oderaotoshi, S. Sakaguchi,
H. Yamamoto, J. Tanaka, E. Wada, D. P. Curran, J. Am. Chem. Soc.
1998, 120, 3074-3088; j) S. Kanemasa, Y. Oderaotoshi, H. Yamamoto,
J. Tanaka, E. Wada, D. P. Curran, J. Org. Chem. 1997, 62, 6454-6455;
k) W. Odenkirk, B. Bosnich, J. Chem. Soc., Chem. Commun. 1995,
1181-1182.
–
1a CpMn(CO)3 Me 2k 3ak 40
–
1a Cy
1a Ph
1a Ph
1b Ph
1c Ph
Me 2l
CF3 2m 3am >99
Et 2n 3an >99
3al
86
–
–
5-Me
6-Me
Me 2a 3ba 97
Me 2a 3ca 94
Me 2a 3da 97
Me 2a 3ea 94
17
5-MeO 1d Ph
5-BnO 1e Ph
18
19[e,f]
20[e,f]
21[e,f,g]
5-F
1f
Ph
Me 2a 3fa
>99
[3]
[4]
[5]
J. M. Andrić, G. V. Janjić, D. B. Ninković, S. D. Zarić, Phys. Chem.
Chem. Phys. 2012, 14, 10896-10898.
Y. Ye, N. D. Ball, J. W. Kampf, M. S. Sanford, J. Am. Chem. Soc. 2010,
132, 14682-14687.
5-Cl
5-Br
1g Ph
1h Ph
Me 2a 3ga 86
Me 2a 3ha 95
a) M. Isegawa, W. M. C. Sameera, A. K. Sharma, T. Kitanosono, M.
Kato, S. Kobayashi, K. Morokuma, ACS Catal. 2017, 7, 5370-5380; b) T.
Kitanosono, P. Xu, S. Kobayashi, Chem. Asian J. 2014, 9, 179-188.
For recent authoritative reviews and the references cited therein, see:
a) T. Kitanosono, S. Kobayashi, Chem. Eur. J. 2020, 26, 9408-9429; b)
T. Kitanosono, K. Masuda, P. Xu, S. Kobayashi, Chem. Rev. 2018, 118,
679-746; c) W. Guo, X. Liu, Y. Liu, C. Li, ACS Catal. 2018, 8, 328-341;
d) T. Kitanosono, S. Kobayashi, “Water-Compatible Chiral Lewis Acids”
In Chiral Lewis Acids in Organic Synthesis, J. Mlynarski, Ed., Wiley-
VCH, 2017, 299-344.
[a] Isolated yield. [b] Determined by HPLC analysis. [c] For 6 h. [d] For 12 h.
[e] For 24 h. [f] At 5 mol% catalyst loading. [g] 2.5 mol% of L was added.
[6]
In conclusion, we have demonstrated that a chiral palladium
aqua complex, wherein
trifluoromethanesulfonate anion as hydrogen-bond donor,
a
chiral ligand interacts with
4
This article is protected by copyright. All rights reserved.