Please do not adjust margins
ChemComm
Page 4 of 4
DOI: 10.1039/C7CC00311K
COMMUNICATION
Journal Name
T. Leavitt, C. T. Griffiths, L. Parker, V. R. Zurawski, R. C.
Knapp, N. Engl. J. Med. 1983, 309, 883-887; (c) W. C. S. Cho,
T. T. C. Yip, C. Yip, V. Yip, V. Thulasiraman, R. K. C. Ngan, T.-T.
Yip, W.-H. Lau, J. S. K. Au, S. C. K. Law, W.-W. Cheng, V. W. S.
Ma, C. K. P. Lim, Clin. Cancer Res. 2004, 10, 43-52.
(a) W. Yang, Y. Cheng, T. Xu, X. Wang, L. Wen, Eur. J. Med.
Chem. 2009, 44, 862-868; (b) J. Zempleni, S. S. Wijeratne, Y. I.
Hassan, BioFactors 2009, 35, 36-46.
the uptake of 5 into cells was investigated in the presence of the
modulators for various signaling pathways; genistein,19 forskolin,20
PMA21 and KN-6222 are used to modulate the protein tyrosine
kinase (PTK), protein kinase A (PKA) as well as C (PKC) and calcium-
calmodulin pathways, respectively. As shown in Fig. 4, the
fluorescence intensity from 5 is strongly inhibited by PMA, whereas
the others did not show any effect, indicating that the biotin-
conjugates uptake is selectively controlled by protein kinase C
activity. These results also demonstrate that the biotin-conjugates
are excellent candidates for cancer targeting imaging and drug
delivery. Conversely, the uptake of the non-biotin system 2 was not
changed in the presence of any of these modulators (Fig. S8).
Aditionally, the viability of the cells was not affected by the
presence of the biotin conjugates (Fig. S9).
5
6
7
H. M. Said, J Nutr. 1999, 129, 490S-493S.
(a) V. Kansara, S. Luo, B. Balasubrahmanyam, D. Pal, A. K.
Mitra, Int. J. Pharm. 2006, 312, 43-52; (b) H. M. Said, Subcell.
Biochem. 2012, 56, 1.
(a) S. W. Park, D. E. Casalena, D. J. Wilson, R. Dai, P. P. Nag, F.
Liu, J. P. Boyce, J. A. Bittker, S. L. Schreiber, B. C. Finzel, D.
Schnappinger, C. C. Aldrich, Chem. Biol. 2015, 22, 76-86; (b)
R. Kumar, J. Han, H.-J. Lim, W. X. Ren, J.-Y. Lim, J.-H. Kim, J. S.
Kim, J. Am. Chem. Soc. 2014, 136, 17836-17843; (c) M. H.
Lee, J. L. Sessler, J. S. Kim, Acc. Chem. Res. 2015, 48, 2935-
2946; (d) R. Kumar, E.-J. Kim, J. Han, H. Lee, W. S. Shin, H. M.
8
In summary, we have designed and developed biotinylated probes
with varying hydrophilicity to investigate their cellular uptake
mechanism and behavior. Compared with the non-biotinylated
fluorescent probes, probe 5 exhibits preferential cellular uptake
among other biotinylated probes through SMVT-protein receptors
under sodium-ion dependent manner. In addition, the cellular
uptake behavior is regulated under PKC-mediation by utilizing
intracellular ATPs. Taken together, these data collectively highlight
the critical role of hydrophilicity on the cellular uptake processes of
biotin-based cancer targeting imaging agents. The use of these
guidelines will expand the current cancer cell labelling/targeting
toolbox and also offer the potential to improve their cellular uptake,
which is crucial for the development of in vivo imaging systems and
facilitate rational screening and allow for efficient diagnosis and
monitoring of treatment response and more importantly patient
satisfaction allowing for the implementation of precision medicine
as part of standard patient care.
Kim, S. Bhuniya, J. S. Kim, K. S. Hong, Biomaterials 2016, 104
119-128; (e) W. S. Shin, J. Han, R. Kumar, G. G. Lee, J. L.
Sessler, J.-H. Kim, J. S. Kim, Sci. Rep. 2016, , 29018.
,
6
9
(a) J. I. Stuckey, B. M. Dickson, N. Cheng, Y. Liu, J. L. Norris, S.
H. Cholensky, W. Tempel, S. Qin, K. G. Huber, C. Sagum, K.
Black, F. Li, X.-P. Huang, B. L. Roth, B. M. Baughman, G.
Senisterra, S. G. Pattenden, M. Vedadi, P. J. Brown, M. T.
Bedford, J. Min, C. H. Arrowsmith, L. I. James, S. V. Frye, Nat.
Chem. Biol. 2016, 12, 180-187; (b) J. Su, F. Chen, V. L. Cryns,
P. B. Messersmith, J. Am. Chem. Soc. 2011, 133, 11850-
11853.
10 (a) J. Wang, S. Rao, J. Chu, X. Shen, D. N. Levasseur, T. W.
Theunissen, S. H. Orkin, Nature 2006, 444, 364-368; (b) H.
Zhu, M. Bilgin, R. Bangham, D. Hall, A. Casamayor, P.
Bertone, N. Lan, R. Jansen, S. Bidlingmaier, T. Houfek, T.
Mitchell, P. Miller, R. A. Dean, M. Gerstein, M. Snyder,
Science 2001, 293, 2101-2105.
11 (a) S. R. Sirsi, C. Fung, S. Garg, M. Y. Tianning, P. A.
Mountford, M. A. Borden, Theranostics 2013, 3, 409-419; (b)
X. Liu, B. Testa, A. Fahr, Pharm. Res. 2011, 28, 962-977.
12 J. B. Rothbard, S. Garlington, Q. Lin, T. Kirschberg, E. Kreider,
P. L. McGrane, P. A. Wender, P. A. Khavari, Nat. Med. 2000,
This work was supported by CRI (No. 2009-0081566, JSK) and NRF
(No. 2015R1A5A1037656, CK) of Korea.
6
13 J.-P. Gratton, J. Yu, J. W. Griffith, R. W. Babbitt, R. S.
Scotland, R. Hickey, F. J. Giordano, W. C. Sessa, Nat. Med.
2003, 9, 357-362.
14 P. Kucheryavy, G. Li, S. Vyas, C. Hadad, K. D. Glusac, J. Phys.
Chem. A 2009, 113, 6453-6461.
15 J. L. Kinsella, P. S. Aronson, Am. J. Physiol. 1981, 241, F374-
F379.
16 F. Proverbio, J. W. L. Robinson, G. Whittembury, Biochim.
Biophys. Acta. Biomembr. 1970, 211, 327-336
17 D. E. Keilin, E. F. Hartree, Proc. R. Soc. London Ser. B 1939,
127, 167-191.
, 1253-1257.
Notes and references
1
(a) F. S. Collins, H. N. Varmus, Engl. J. Med. 2015, 372, 793;
(b) S. Hawgood, I. G. Hook-Barnard, T. C. O’Brien, K. R.
Yamamoto, Sci. Transl. Med. 2015, 7, 300ps17; (c) L. A.
Chantrill, A. M. Nagrial, C. Watson, A. L. Johns, M. Martyn-
Smith, S. Simpson, S. Mead, M. D. Jones, J. S. Samra, A. J. Gill,
N. Watson, V. T. Chin, J. L. Humphris, A. Chou, B. Brown, A.
Morey, M. Pajic, S. M. Grimmond, D. K. Chang, D. Thomas, L.
Sebastian, K. Sjoquist, S. Yip, N. Pavlakis, R. Asghari, S.
Harvey, P. Grimison, J. Simes, A. V. Biankin, Clin. Cancer Res.
2015, 21, 2029-2037.
18 (a) W. F. Loomis, F. Lipmann, J. Biol. Chem. 1948, 173, 807-
,
2
3
(a) A. Monica, V. Cecile, L. Sherene, L. Celine, M. Stefan, B.
Herve, A. Fabrice, Nat. Rev. Clin. Oncol. 2015, 12, 693-704;
(b) A. L. Richer, J. M. Friel, V. M. Carson, L. J. Inge, T. G.
808; (b) V. P. Skulachev, Biochim. Biophys. Acta 1998, 1363
100−124.
19 T. Akiyama, J. Ishida, S. Nakagawa, H. Ogawara, S. Watanabe,
,
Whitsett, Pharmgenomics Pers. Med. 2015, 8, 63-79.
N. Itoh, M. Shibuya, Y. Fukami, J. Biol. Chem. 1987, 262
5592-5595.
(a) Y.-W. Jun, Y.-M. Huh, J.-S. Choi, J.-H. Lee, H.-T. Song, S.
Kim, S. Yoon, K.-S. Kim, J.-S. Shin, J.-S. Suh, J. Cheon, J. Am.
Chem. Soc. 2005, 127, 5732-5733; (b) N. Kosaka, H. Iguchi, T.
Ochiya, Cancer Sci. 2010, 101, 2087-2092; (c) S. Ramaswamy,
P. Tamayo, R. Rifkin, S. Mukherjee, C.-H. Yeang, M. Angelo, C.
Ladd, M. Reich, E. Latulippe, J. P. Mesirov, T. Poggio, W.
Gerald, M. Loda, E. S. Lander, T. R. Golub, Proc. Natl. Acad.
Sci. U.S.A. 2001, 98, 15149-15154.
20 K. B. Seamon, J. W. Daly, J. Cyclic Nucleotide Res. 1981,
201-224.
7
,
21 T. J. Rink, A. Sanchez, T. J. Hallam, Nature 1983, 305, 317-319
22 H. Tokumitsu, T. Chijiwa, M. Hagiwara, A. Mizutani, M.
Terasawa, H. Hidaka, J. Biol. Chem. 1990, 265, 4315-4320.
4
(a) C. A. Lipinski, F. Lombardo, B. W. Dominy, P. J. Feeney,
Adv. Drug Deliv. Rev. 1997, 23, 3-25; (b) R. C. Bast, T. L. Klug,
E. S. John, E. Jenison, J. M. Niloff, H. Lazarus, R. S. Berkowitz,
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins