Mechanism of Tro¨ger’s Base Formation
SCHEME 1. Tro1ger’s Base from p-Toluidine and
Formaldehyde
SCHEME 2. Original Mechanism Proposed by Wagner for
the Formation of Tro1ger’s Bases
FIGURE 1. Intermediates proposed by Farrar for the formation of
Tro¨ger’s bases and its byproduct 8.
SCHEME 3. Intermediate Proposed by Cooper and
Partridge to Explain the Formation of Tro1ger’s Base
and the majority of synthetic receptors have used macrocyclic
rings to enforce the formation of concave surfaces. For Tro¨ger’s
bases, however, their rigid chiral grooves are maintained by
conformational constraints intrinsic to their unique architecture
and are produced without recourse to macrocyclic structural
elements. Tro¨ger’s bases have been used therefore mainly as
synthetic receptors but also as chiral solvating agents,6 as
fluorescent compounds,7 and for biological8 and catalytic
activity.9 Recently, Tro¨ger’s base interactions with DNA have
been explored, as exemplified by the work of Yashima et al.
who used a Tro¨ger base derived from chiral bis(1,10-phenan-
throline) for DNA recognition.10 Demeunynck et al. also used
both the unique geometry and chirality of Tro¨ger’s bases with
the DNA binding properties of acridines to form a new family
of C2 chiral DNA binding molecules.11 The binding of the
proflavine-based Tro¨ger base has also been shown to be both
enantio- and sequence-specific.12 Asymmetric Tro¨ger bases
containing the two well-characterized DNA binding chro-
mophores, proflavine and phenanthroline, have also been
formed.13 The proflavine moiety was shown to intercalate
between DNA base pairs, and the phenanthroline ring occupied
the DNA groove. Tro¨ger’s bases have been used also as
molecular tweezers by extending their aromatic surfaces via
fusion of the methanodiazocine core with other Tro¨ger’s bases.
Examples of such molecular tweezers are bis-Tro¨ger’s bases14
and tris-Tro¨ger’s base analogues.15
The first attempts to establish the structures of Tro¨ger’s bases
by Lo¨b,16 Goecke,17 Lepetit,18 and Eisner and Wagner19 were
incorrect, but in 1935, Spielman20 succeeded in determining their
correct and unique V-shaped structures. The angle formed by
the least-square planes containing the two aryl rings changes
depending on the ring substituents and varies from 88 to 113°.21
The mechanism of Tro¨ger’s base formation was extensively
studied by Wagner in the 1930s,22 and Scheme 2 depicts his
first proposal.
In the classical reaction conditions (Scheme 2), the first step
involves the acid-catalyzed reaction of p-toluidine 1 with
formaldehyde, which acts as the source of methylene to give
imine 2 as the first key intermediate. Acid-catalyzed condensa-
tion of [2 + H]+ with 1 followed by two concomitant methylene
additions accompanied by cyclizations gives Tro¨ger’s base 6
(4) (a) Adrian, J. C., Jr.; Wilcox, C. S. J. Am. Chem. Soc. 1989, 111,
8055. (b) Crossley, M. J.; Hambley, T. W.; Mackay, L. G.; Try, A. C.;
Walton, R. J. Chem. Soc., Chem. Commun. 1995, 10, 1077. (c) Crossley,
M. J.; Mackay L. G.; Try, A. C. J. Chem. Soc., Chem. Commun. 1995, 18,
1925. (d) Goswami, S.; Ghosh, K. Tetrahedron Lett. 1997, 38, 4503. (e)
Manjula, A.; Nagarajan, M. Tetrahedron 1997, 53, 11859. (f) Hansson, A.
P.; Norrby, P.; Wa¨rnmark, K. Tetrahedron Lett. 1998, 39, 4565. (g)
Goswami, S.; Ghosh, K.; Dasgupta, S. J. Org. Chem. 2000, 65, 1907-
1914.
(5) (a) Wilcox, C. S. Tetrahedron Lett. 1985, 26, 5749. (b) Wilcox, C.
S.; Cowart, M. D. Tetrahedron Lett. 1986, 27, 5563. (c) Wilcox, C. S.;
Adrian, J. C., Jr.; Webb, T. H.; Zawacki, F. J. J. Am. Chem. Soc. 1992,
114, 10189. (d) Webb, T. H.; Wilcox, C. S. Chem. Soc. ReV. 1993, 383.
(6) Wilen, S. H.; Qi, J. Z.; Williard, P. G. J. Org. Chem. 1991, 56, 485.
(7) (a) Zhao, L.; Xu, J. J.; Zhang, G.; Bu, X.; Shionoya, M. Opt. Lett.
1999, 24, 1793. (b) Abella, C. A. M.; Rodembusch, F. S.; Stefani, V.
Tetrahedron Lett. 2004, 45, 5601. (c) Deprez, N. R.; McNitt, K. A.; Petersen,
M. E.; Brown, R. G.; Lewis, D. E. Tetrahedron Lett. 2005, 46, 2149.
(8) Johnson, R. A.; Gorman, R. R.; Wnuk, R. J.; Crittenden, N. J.; Aiken,
J. W. J. Med. Chem. 1993, 36, 3202.
(13) Baldeyrou, B.; Tardy, C.; Bailly, C.; Colson, P.; Houssier, C.;
Charmantray, F.; Demeunynck, M. Eur. J. Med. Chem. 2002, 37, 315.
(14) Pardo, C.; Sesmilo, E.; Gutie´rrez-Puebla, E.; Monge, A.; Elguero,
J.; Fruchier, A. J. Org. Chem. 2001, 66, 1607.
(15) (a) Mas, T.; Pardo, C.; Elguero, J. MendeleeV Commun. 2004, 6,
235. (b) Dolensky´, B.; Val´ık, M.; Sy´kora, D.; Kra´l, V. Org. Lett. 2005, 7,
67. (c) Hansson, A.; Wixe, T.; Bergquist, K-E.; Wa¨rnmark, K. Org. Lett.
2005, 7, 2019-2022.
(16) Lo¨b, W. Z. Elektrochem. 1898, 4, 428.
(17) Goecke, E. Z. Elektrochem. 1903, 9, 470.
(18) (a) Lepetit, R.; Maimeri, C. Atti. Accad. Naz. Lincei. 1917, 26, 558.
(b) Lepetit, R.; Maffei, G.; Maimeri, C. Gazz. Chim. Ital. 1927, 57, 862.
(19) Eisner, A.; Wagner, E. C. J. Am. Chem. Soc. 1934, 56, 1938.
(20) Spielman, M. A. J. Am. Chem. Soc. 1935, 57, 583.
(21) (a) Larson, S. B.; Wilcox, C. S. Acta Crystallogr., Sect. C 1986,
42, 224. (b) Pardo, C.; Alkorta, I.; Elguero, J. Tetrahedron: Asymmetry
2006, 17, 191-198.
(9) Goldberg, Y.; Alper, H. Tetrahedron Lett. 1995, 36, 369.
(10) Yashima, E.; Akashi, M.; Miyauchi, N. Chem. Lett. 1991, 6, 1017.
(11) Tatiboue¨t, A.; Demeunynck, M.; Andraud, C.; Collet, A.; Shomme,
J. Chem. Commun. 1999, 2, 161.
(12) Laine, W.; Demeunynck, M.; Lhome, J. Biochem. Biophys. Res.
Commun. 2000, 273, 681.
(22) (a) Wagner, E. C. J. Am. Chem. Soc. 1935, 57, 1296. (b) Miller, T.
R.; Wagner, E. C. J. Am. Chem. Soc. 1941, 63, 832.
J. Org. Chem, Vol. 72, No. 11, 2007 4049