Chemistry of Materials
Article
when reacting larger molecules, hopefully offering improved
catalytic properties in selective oxidation reactions.
ACKNOWLEDGMENTS
■
Financial support by the Spanish MINECO (MAT2012-37160,
and Consolider Ingenio 2010-Multicat), Generalitat Valenciana
by the PROMETEO program, and UPV through PAID-06-11
(no. 1952) is acknowledged. M.M. also acknowledges
“Subprograma Ramon y Cajal” for the contract RYC-2011-
08972.
At this point, we have three different titanosilicate forms of
MWW-related materials. On one hand, there is regular Ti-
MWW and expanded Ti-MWW-exp(1); both show a similar Ti
content (see Table 1), all Ti species being in tetrahedral
coordination (see Figure 2), and comparable crystal sizes (see
images of scanning electron microscopy, SEM, in Figure 4).
The main difference between these materials is the pore size
distribution obtained by Ar adsorption (see Figure 3). On the
other hand, Ti-MWW-exp(2) shows a lower Ti content than
the above described materials, but a better expanded layered
structure, as observed by PXRD and Ar adsorption.
REFERENCES
■
(1) (a) Notari, B. Adv. Catal. 1996, 41, 253. (b) Saxton, R. J. Top.
Catal. 1999, 9, 43. (c) Ratnasamy, P.; Srinivas, D.; Knozinger, H. Adv.
Catal. 2004, 48, 1. (d) Bordiga, S.; Bonino, F.; Damin, A.; Lamberti, C.
Phys. Chem. Chem. Phys. 2007, 9, 4854.
̈
The low activity observed when medium-pore titanosilicates,
such as MWW, are applied as catalysts in the epoxidation of
cyclohexene has been well-described.17,18 Thus, the higher pore
size distribution in the case of Ti-MWW-exp(1) and Ti-MWW-
exp(2) should improve the catalytic properties of Ti-MWW
when a cycloalkene, such as cyclohexene, is used as a substrate
in selective epoxidation. Catalytic tests on cyclohexene with
MWW-related materials were performed using H2O2 as oxidant
and acetonitrile as solvent at 333 K. As observed in Figure 5,
Ti-MWW-exp(1) and Ti-MWW, both presenting similar Ti
contents, behave differently on cyclohexene epoxidation. Ti-
MWW-exp(1) shows a much higher activity than regular Ti-
MWW, which can be easily explained by the reduction of
diffusion problems due to the increase of the pore size
distribution on Ti-MWW-exp(1). Indeed, the highly expanded
Ti-MWW-exp(2) material shows the higher activity per active
site (TOF, turnover frequency number calculated from initial
reaction rates) of all studied MWW-related materials (see Table
2). In terms of cyclohexene epoxide selectivity, Ti-MWW-
exp(1) and Ti-MWW-exp(2) perform very well, showing values
higher than 90% toward the desired epoxide molecule (see
Table 2).
(2) Tamarasso, M.; Perego, G.; Notari, B. U.S. Patent 4,410,501,
1983.
(3) Corma, A. Catal. Rev.: Sci. Eng. 2004, 46, 369.
(4) (a) Camblor, M. A.; Corma, A.; Martinez, A.; Perez-Pariente, J. J.
Chem. Soc., Chem. Commun. 1992, 589. (b) van der Waal, J. C.;
Kooyman, P. J.; Jansen, J. C.; van Bekkum, H. Microporous Mesoporous
Mater. 1998, 25, 43.
(5) Tatsumi, T.; Jappar, N. J. Phys. Chem. 1998, 102, 7126.
(6) Wu, P.; Komatsu, T.; Yashima, T. J. Phys. Chem. 1996, 100,
10316.
(7) Diaz-Cabanas, M. J.; Villaescusa, L. A.; Camblor, M. A. Chem.
̃
Commun. 2000, 761.
(8) Moliner, M.; Serna, P.; Cantin, A.; Sastre, G.; Diaz-Cabanas, M.
̃
J.; Corma, A. J. Phys. Chem. C 2008, 112, 19547.
(9) Leonowicz, M. E.; Lawton, J. A.; Lawton, S. L.; Rubin, M. K.
Science 1994, 264, 1910.
(10) Lawton, S. L.; Leonowicz, M. E.; Partridge, P. D.; Chu, P.;
Rubin, M. K. Microporous Mesoporous Mater. 1998, 23, 109.
(11) (a) Roth, W. J.; Kresge, C.; Vartulli, J. C.; Leonowicz, M. E.;
Fung, A. S.; McCullen, S. B. Stud. Surf. Sci. Catal. 1995, 94, 301.
(b) Corma, A.; Diaz, U.; Garcia, T.; Sastre, G.; Velty, A. J. Am. Chem.
Soc. 2010, 132, 15011.
(12) Corma, A.; Fornes, V.; Pergher, S. B.; Maesen, Th. L. M.;
Buglass, J. G. Nature 1998, 396, 353.
(13) Wu, P.; Tatsumi, T.; Komatsu, T.; Yashima, T. Chem. Lett. 2000,
774.
4. CONCLUSIONS
(14) Diaz-Cabanas, M. J. Ph.D. Tesis, Universidad Politec
Valencia, Valencia, Spain, 1999.
́
nica de
̃
A new synthetic route starting from an all-silica precursor, ITQ-
1, is used for the preparation of an expanded titanosilicate form
of MWW-related material. This methodology improves the
synthetic route reported by Tatsumi et al., where borosilicate
MWW precursors, and, consequently, several postsynthetic acid
treatments for removing boron atoms from the framework,
were required in the synthesis of the expanded Ti-YNU-1. The
expanded titanosilicate MWW-related materials prepared
following the methodology presented here improve the activity
of bulky cycloalkenes, such as cyclohexene, in the selective
epoxidation reaction with H2O2 as oxidant when compared to
regular Ti-MWW. This methodology could open an interesting
synthesis route using pure silica layered materials, delaminated
zeolites, or nanosheets as precursors for the preparation of
metallosilicates.
(15) Wu, P.; Tatsumi, T.; Komatsu, T.; Yashima, T. J. Phys. Chem. B
2001, 105, 2897.
(16) Wu, P.; Tatsumi, T.; Komatsu, T.; Yashima, T. J. Catal. 2001,
202, 245.
(17) Fan, W.; Wu, P.; Namba, S.; Tatsumi, T. J. Catal. 2006, 243,
183.
(18) Fan, W.; Wu, P.; Namba, S.; Tatsumi, T. Angew. Chem., Int. Ed.
2004, 43, 236.
(19) Ruan, J.; Wu, P.; Slater, B.; Terasaki, O. Angew. Chem., Int. Ed.
2005, 44, 6719.
(20) Millini, R.; Perego, G.; Parker, W. O.; Bellusi, G.; Carluccio, L.
Microporous Mater. 1995, 4, 221.
(21) Wu, P.; Tatsumi, T. Chem. Commun. 2002, 1026.
(22) Zones, S. I.; Hwang, S. J.; Davis, M. E. Chem.Eur. J. 2001, 7,
1990.
(23) Diaz-Cabanas, M. J.; Camblor, M. A.; Corell, C.; Corma, A. U.S.
Patent 6,077,498, 2000.
AUTHOR INFORMATION
Corresponding Author
■
(24) Bordiga, S.; Coluccia, S.; Lamberti, C.; Marchese, L.; Zecchina,
A.; Boscherini, F.; Buffa, F.; Genoni, G.; Leofanti, G. J. Phys. Chem.
1994, 98, 4125.
Author Contributions
†The paper was written through contributions of all authors. All
authors have given approval to the final version of the
manuscript.
Notes
The authors declare no competing financial interest.
4375
dx.doi.org/10.1021/cm302509m | Chem. Mater. 2012, 24, 4371−4375