10426 J. Phys. Chem. A, Vol. 114, No. 38, 2010
Os´miałowski et al.
Iwasawa, Y.; Hayama, T.; Nishimura, S.; Morishima, H. J. Med. Chem.
2001, 44, 4615–4627.
(24) Lu¨ning, U.; Ku¨hl, C.; Uphoff, A. Eur. J. Org. Chem. 2002, 2002,
4063–4070.
comparable intermolecular interactions to take place both in
their chloroform solution and in the solid state. Unless R is
not too bulky, relatively strong NamidesH · · · Npyridine inter-
molecular hydrogen bonds enable dimerization to take place.
Steric interactions in N-pivaloyl- and N-1-adamantylcarbonyl
derivatives preclude formation of the dimers. Instead, ag-
gregates formed in such a case are stabilized by both the
(25) Mazik, M.; Radunz, W.; Boese, R. J. Org. Chem. 2004, 69, 7448–
7462.
(26) Bensemann, I.; Gdaniec, M.; Łakomecka, K.; Milewska, M. J.;
Polon´ski, T. Org. Biomol. Chem. 2003, 1, 1425–1434.
(27) Aakero¨y, C.; Schultheiss, N.; Desper, J. CrystEngComm 2007, 9,
211–214.
(28) Wilson, A. J. Soft Matter 2007, 3, 409–425.
(29) Aakero¨y, C. B.; Hussain, I.; Desper, J. Cryst. Growth Des. 2005,
6, 474–480.
(30) Krygowski, T. M.; Pawlak, D.; Anulewicz, R.; Rasała, D.;
Gawinecki, R.; Ha¨felinger, G.; Homsi, M. N.; Kuske, F. K. H. Acta Chem.
Scand. 1996, 50, 808–815.
N
amidesH· · ·Npyridine and NamidesH· · ·OdC, e.g., for R ) t-Bu,
or exclusively by NamidesH· · ·OdC intermolecular hydrogen
bonds, e.g., for R ) 1-Ad. Effectiveness of dimerization in
solution is lowered by steric effect of the 6-methyl group.
Moreover, aggregates of 6-methyl-2-acylaminopyridines are not
dimers.
(31) Gawinecki, R.; Raczyn´ska, E. D.; Rasała, D.; Styrcz, S. Tetrahedron
1997, 53, 17211–17220.
Acknowledgment. The authors gratefully acknowledge fi-
nancial support from Polish Ministry of Science and Higher
Education (Grant No. N N204 174138). We are very much
indebted to the Academic Computer Centre in Gdansk-TASK
and CYFRONET in Cracow for providing computer time and
programs. The Academy of Finland is thanked for financial
support (Project No. 212588).
(32) Katritzky, A. R.; Ghiviriga, I. J. Chem. Soc., Perkin Trans. 2 1995,
1651–1653.
(33) Mocilac, P.; Tallon, M.; Lough, A. J.; Gallagher, J. F. CrystEng-
Comm 2010, DOI: 10.1039/c002986f.
(34) Forbes, C. C.; Beatty, A. M.; Smith, B. D. Org. Lett. 2001, 3, 3595–
3598.
(35) Zimmerman, S. C.; Murray, T. J. Philos. Trans. R. Soc., A 1993,
345, 49–56.
(36) Chapkanov, A. G.; Zareva, S. Y.; Nikolova, R.; Trendafilova, E.
Collect. Czech. Chem. Commun. 2009, 74, 1295–1308.
(37) Ghosh, K.; Sen, T.; Frohlich, R.; Petsalakis, I. D.; Theodorako-
poulos, G. J. Phys. Chem. B 2010, 114, 321–329.
(38) Fan, E.; Yang, J.; Geib, S. J.; Stoner, T. C.; Hopkins, M. D.;
Hamilton, A. D. J. Chem. Soc., Chem. Commun. 1995, 1251–1252.
(39) Garcia-Tellado, F.; Geib, S. J.; Goswami, S.; Hamilton, A. D. J. Am.
Chem. Soc. 1991, 113, 9265–9269.
(40) COLLECT. Bruker AXS, Inc.: Madison, WI, 2008.
(41) Otwinowski, Z.; Minor, W. Methods Enzymol. 1997, 276, 307–
326.
(42) Burla, M. C.; Camalli, M.; Carrozzini, B.; Cascarano, G. L.;
Giacovazzo, C.; Polidori, G.; Spagna, R. J. Appl. Crystallogr. 2005, 38,
381–388.
(43) Farrugia, L. J. J. Appl. Crystallogr. 1999, 32, 837–838.
(44) Sheldrick, G. M. Acta Crystallogr., Sect. A 2008, 64, 112–122.
(45) Os´miałowski, B.; Kolehmainen, E.; Sievanen, E.; Kauppinen, R.;
Behera, B. J. Mol. Struct. 2009, 931, 60–67.
(46) Chen, J.-S.; Rosenberger, F. Tetrahedron Lett. 1990, 31, 3975–
3978.
(47) Frisch, M. J. Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.;
Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.;
Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.;
Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.;
Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li,
X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.;
Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.;
Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.;
Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels,
A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.;
Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.;
Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz,
P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.;
Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson,
B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03,
ReVision E.01; Gaussian, Inc.: Pittsburgh, PA, 2004.
(48) Miertusˇ, S.; Scrocco, E.; Tomasi, J. Chem. Phys. 1981, 55, 117–
129.
Supporting Information Available: NMR spectra, dilution
experiment curves, IR spectra, X-ray data, and geometries of
the optimized structures. This material is available free of charge
References and Notes
(1) Muller-Dethlefs, K.; Hobza, P. Chem. ReV. 2000, 100, 143–168.
(2) Brunsveld, L.; Folmer, B. J. B.; Meijer, E. W.; Sijbesma, R. P.
Chem. ReV. 2001, 101, 4071–4098.
(3) De Greef, T. F. A.; Smulders, M. M. J.; Wolffs, M.; Schenning,
A. P. H. J.; Sijbesma, R. P.; Meijer, E. W. Chem. ReV. 2009, 109, 5687–
5754.
(4) Berda, E. B.; Foster, E. J.; Meijer, E. W. Macromolecules 2010,
43, 1430–1437.
(5) Berl, V.; Schmutz, M.; Krische, M. J.; Khoury, R. G.; Lehn, J.-M.
Chem.sEur. J. 2002, 8, 1227–1244.
(6) Burrows, A. D. Crystal Engineering Using Multiple Hydrogen
Bonds. In Supramolecular assembly Via hydrogen bonds; Mingos, D. M. P.,
Ed.; Springer: Berlin/Heidelberg, 2004; pp 55-96.
(7) Astbury, W. T.; Woods, H. J. Philos. Trans. R. Soc., A 1934, 232,
333–394.
(8) Huggins, M. L. Chem. ReV. 1943, 32, 195–218.
(9) Pauling, L.; Corey, R. B.; Branson, H. R. Proc. Natl. Acad. Sci.
U.S.A. 1951, 37, 205–211.
(10) Richards, F. M.; Kundrot, C. E. Proteins: Struct., Funct., Genet.
1988, 3, 71–84.
(11) Kabsch, W.; Sander, C. Biopolymers 1983, 22, 2577–2637.
(12) Frishman, D.; Argos, P. Proteins: Struct., Funct., Genet. 1995, 23,
566–579.
(13) Jeffery, G. A.; Saenger, W. Hydrogen Bonding in Proteins. In
Hydrogen Bonding in Biological Structures; Springer-Verlag: Berlin, 1994;
pp 351-394.
(14) Jeffery, G. A.; Saenger, W. General, Non-Base-Pairing Hydrogen
Bonds. In Hydrogen Bond in Biological Structures; Springer-Verlag: Berlin,
1994; pp 237-247.
(15) Eckert, J.; Barthes, M.; Klooster, W. T.; Albinati, A.; Aznar, R.;
Koetzle, T. F. J. Phys. Chem. B 2000, 105, 19–24.
(16) Katz, J. L.; Post, B. Acta Crystallogr. 1960, 13, 624–628.
(17) Bowes, K. F.; Glidewell, C.; Low, J. N.; Skakle, J. M. S.; Wardell,
J. L. Acta Crystallogr. 2003, C59, o1–o3.
(18) Lu¨ning, U.; Ku¨hl, C. Tetrahedron Lett. 1998, 39, 5735–5738.
(19) Brammer, S.; Lu¨ning, U.; Ku¨hl, C. Eur. J. Org. Chem. 2002, 2002,
4054–4062.
(49) Cohen, T.; Deets, G. L. J. Org. Chem. 1972, 37, 55–58.
(50) Li, C.-D.; Rittmann, L. S.; Tsiftsoglou, A. S.; Bhargava, K. K.;
Sartorelli, A. C. J. Med. Chem. 1978, 21, 874–877.
(51) Kato, T.; Masuda, S. Chem. Pharm. Bull. (Tokyo) 1975, 23, 2251–
2256.
(52) Kato, T.; Yamamoto, Y.; Takeda, S. Yakugaku Zasshi 1973, 93,
1034–1042.
(20) Corbin, P. S.; Zimmerman, S. C.; Thiessen, P. A.; Hawryluk, N. A.;
Murray, T. J. J. Am. Chem. Soc. 2001, 123, 10475–10488.
(21) Chien, C.-H.; Leung, M.-k.; Su, J.-K.; Li, G.-H.; Liu, Y.-H.; Wang,
Y. J. Org. Chem. 2004, 69, 1866–1871.
(22) Smith, E. A.; Kyo, M.; Kumasawa, H.; Nakatani, K.; Saito, I.; Corn,
R. M. J. Am. Chem. Soc. 2002, 124, 6810–6811.
(53) Danel, K.; Petrzycki, W.; Sepiol, J.; Tomasik, P. Pol. J. Chem.
1994, 68, 1989–1998.
(54) Turner, J. A. J. Org. Chem. 1983, 48, 3401–3408.
(55) Sudha, L. V.; Manogaran, S.; Sathyanarayana, D. N. J. Mol. Struct.
1985, 129, 137–144.
(56) Farrugia, L. J. J. Appl. Crystallogr. 1997, 30, 565–565.
(23) Honma, T.; Hayashi, K.; Aoyama, T.; Hashimoto, N.; Machida,
T.; Fukasawa, K.; Iwama, T.; Ikeura, C.; Ikuta, M.; Suzuki-Takahashi, I.;
JP1063116