SHORT PAPER
Improved Synthesis of Per(6-bromo-6-deoxy)cyclodextrins
3613
1
H NMR (DMSO-d ): d = 3.34 (d, J = 10.0 Hz, 14 H, H-6), 3.59–
6
OH
Br
3
.66 (m, 14 H, H-2, H-4), 3.86 (t, J = 8.4 Hz, 7 H, H-3), 3.99 (d,
O
O
J = 10.0 Hz, 7 H, H-5), 4.95 (s, 7 H, H-l), 5.88 (s, 7 H, OH-3), 5.98
HO
HO
(
d, J = 8.0 Hz, 7 H, OH-2).
OH O
OH O
n
n
13
C NMR (DMSO-d ): d = 102.58 (C1), 85.10 (C4), 72.75 (C3),
6
7
2.52 (C2), 71.47 (C5), 34.91 (C6).
1
2
n = 6, 7 or 8
+
HRMS (ESI): m/z [M + Na] calcd for C H O NaBr : 1590.7687;
4
2
63 28
7
found: 1590.7724.
Scheme 1 Reagents and conditions: CPMA, TBAB, DMF, r.t.,
90%.
>
Octakis(6-bromo-6-deoxy)-g-cyclodextrin (2, n = 8)
Yield: 6.8 g (95%).
minating the primary face of cyclodextrins has been de-
scribed. The practicable protocol allows for the
production of large amounts of the title compounds,
which are versatile building blocks in cyclodextrin chem-
istry.
2
0
[
1
a]D +113.6 (c 1.0, DMF); R = 0.60.
f
H NMR (DMSO-d ): d = 3.35 (s, 16 H, H-6), 3.61–3.62 (m, 16 H,
H-2, H-4), 3.79 (s, 8 H, H-3), 3.96 (d, J = 10.0 Hz, 8 H, H-5), 4.94
s, 8 H, H-1), 5.85 (s, 8 H, OH-3), 5.97 (d, J = 5.6 Hz, 8 H, OH-2).
6
(
1
3
C NMR (DMSO-d ): d = 102.60 (C1), 85.12 (C4), 72.79 (C3),
2.55 (C2), 71.52 (C5), 34.88 (C6).
6
7
The a-, b-, and g-cyclodextrins were recrystallized from water and
+
HRMS (ESI): m/z [M + Na] calcd for C H O NaBr : 1814.7371;
found: 1814.7428.
4
8
72 32
8
dried over P O under reduced pressure in a drying pistol at 110 °C
2
5
prior to use. All the reagents and solvents were commercial prod-
ucts and used as received, unless otherwise noted. DMF was dis-
tilled over CaH prior to use. TLC was performed on precoated
plates of silica gel 60 F254 using EtOAc–i-PrOH–concd aq NH3–
H O (1:5:3:1) as eluent; visualization of spots was effected by char-
2
2
Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synthesis.
ring with 20% (v/v) H SO in EtOH. Optical rotations were mea-
2
4
sured with a JASCO DIP-370 digital polarimeter, using a sodium Acknowledgment
1
13
lamp (l = 589 nm) at 20 °C. The H and C NMR spectra were re-
This work was financially supported by the Fundamental Research
Funds for Lanzhou University (lzujbky-2009-27 and lzujbky-2011-
corded on a Varian Mercury Plus 400 spectrometer at 400 MHz in
DMSO-d with references at d = 2.49 ppm and 39.50 ppm (DMSO),
6
1
36).
or in CDCl with references at 7.26 ppm (CHCl ) and 77.0 ppm
3
3
(
CDCl ), respectively. High-resolution mass spectra (HRMS) were
3
recorded on a Bruker APEX II mass spectrometer using electro-
spray ionization (ESI).
References
(
1) Easton, C. J.; Lincoln, S. F. Modified Cyclodextrin; Imperial
Per(6-bromo-6-deoxy)cyclodextrins 2; General Procedure
To a soln of CPMA (2 equiv per glucose unit) in anhyd DMF (100
mL) was added freshly dried a-, b-, or g-cyclodextrin (1, n = 6, 7,
or 8; 4 mmol) and anhyd TBAB (2 equiv per glucose unit) with stir-
ring at r.t. After the reaction was complete, as monitored by TLC,
DMF was removed under reduced pressure and the resulting residue
was poured into sat. Na CO soln (100 mL); the reaction mixture
College Press: London, 1999, 1.
(2) (a) Parrot-Lopez, H.; Ling, C.-C.; Zhang, P.; Baszkin, A.;
Abrecht, G.; Rango, C. D.; Coleman, A. W. J. Am. Chem.
Soc. 1992, 114, 5479. (b) Gorin, B. I.; Riopelle, R. J.;
Thatcher, G. R. J. Tetrahedron Lett. 1996, 37, 4647.
(c) David, L.; Abdoulaye, G.; Vincent, M.; Serge, P.;
Florence, D. Carbohydr. Res. 2005, 340, 1225.
2
3
was allowed to stir for another 1 h. Addition of cold acetone (200
mL) gave a precipitate which was collected by filtration and ex-
(3) Vizitiu, D.; Walkinshaw, C. S.; Gorin, B. I.; Thatcher, G. R.
J. J. Org. Chem. 1997, 62, 8760.
haustively washed with H O and acetone to yield 2 as a white solid.
(4) (a) Ortiz-Mellet, C.; Benito, J. M.; Fernández, G.; Law, H.;
Chmurski, K.; Defaye, J.; O’Sullivan, M. L.; Caro, H. N.
Chem. Eur. J. 1998, 4, 2523. (b) Gómez-García, M.;
Benito, J. M.; Rodríguez-Lucena, D.; Yu, J.-X.; Chmurski,
K.; Mellet, C. O.; Gallego, R. G.; Maestre, A.; Defaye, J.;
Fernández, J. M. G. J. Am. Chem. Soc. 2005, 127, 7970.
2
Hexakis(6-bromo-6-deoxy)-a-cyclodextrin (2, n = 6)
Yield: 5.2 g (96%).
20
[
a]D +97.4 (c 1.0, DMF); R = 0.53.
f
1
H NMR (DMSO-d ): d = 3.34 (d, J = 8.8 Hz, 12 H, H-6), 3.59–
6
(
c) Song, Y.; Kohlmeir, E. K.; Meade, T. J. J. Am. Chem.
3
.67 (m, 12 H, H-2, H-4), 3.80 (t, J = 8.4 Hz, 6 H, H-3), 3.99 (d,
Soc. 2008, 130, 6662. (d) Ravoo, B. J.; Darcy, R. Angew.
Chem. Int. Ed. 2000, 39, 4324.
J = 10.0 Hz, 6 H, H-5), 4.95 (s, 6 H, H-1), 5.86 (s, 6 H, OH-3), 5.98
(
d, J = 8.0 Hz, 6 H, OH-2).
(
5) (a) Clarke, R. J.; Coates, J. H.; Lincoln, S. F. Adv.
Carbohydr. Chem. Biochem. 1988, 46, 205. (b) Brown, S.
E.; Coates, J. H.; Easton, C. J.; van Eyk, S. J.; Lincoln, S. F.;
May, B. L.; Style, M. A.; Whalland, C. B.; Williams, M. L.
J. Chem. Soc., Chem. Commun. 1994, 47. (c) Brown, S. E.;
Coates, J. H.; Easton, C. J.; Lincoln, S. F. J. Chem. Soc.,
Faraday Trans. 1994, 90, 739. (d) Brown, S. E.; Haskard,
C. A.; Easton, C. J.; Lincoln, S. F. J. Chem. Soc., Faraday
Trans. 1995, 91, 1013. (e) Majewska, U. E.; Chmurski, K.;
Biesiada, K.; Olszyna, A. R.; Bilewicz, R. Electroanalysis
1
3
C NMR (DMSO-d ): d = 102.59 (C1), 85.10 (C4), 72.76 (C3),
6
7
2.53 (C2), 71.49 (C5), 34.88 (C6).
+
HRMS (ESI): m/z [M + Na] calcd for C H O NaBr : 1366.8003;
3
6
54 24
6
found: 1366.8049.
Heptakis(6-bromo-6-deoxy)-b-cyclodextrin (2, n = 7)
Yield: 5.8 g (92%).
[
a]D20 +91.2 (c 1.0, DMF); R = 0.71.
f
2006, 18, 1463.
Synthesis 2011, No. 22, 3612–3614 © Thieme Stuttgart · New York