10.1002/anie.202107101
Angewandte Chemie International Edition
RESEARCH ARTICLE
[13] a) T. Bottcher, M. Pitscheider, S. A. Sieber, Angew. Chem. Int. Ed. 2010,
49, 2680-2698; b) S. M. Hacker, K. M. Backus, M. R. Lazear, S. Forli, B. E.
Correia, B. F. Cravatt, Nat. Chem. 2017, 9, 1181-1190; c) A.
Chokkathukalam, D. H. Kim, M. P. Barrett, R. Breitling, D. J. Creek,
Bioanalysis 2014, 6, 511-524.
[14] a) E. E. Carlson, B. F. Cravatt, J. Am. Chem. Soc. 2007, 129, 15780-15782;
b) E. E. Carlson, B. F. Cravatt, Nat. Methods 2007, 4, 429-435.
[15] a) R. R. da Silva, P. C. Dorrestein, R. A. Quinn, Proc. Natl. Acad. Sci. U. S.
A. 2015, 112, 12549-12550; b) B. Y. L. Peisl, E. L. Schymanski, P. Wilmes,
Anal. Chim. Acta 2018, 1037, 13-27.
metabolites that were not previously detected and can now even
be quantified. This comprehensive analysis allows for enhanced
mass spectrometric approaches to biomarker discovery and the
possibility to monitor patients and their disease progression at
different timepoints is a new tool towards personalized medicine
and diagnostics.
[16] X. Domingo-Almenara, et al., Nat. Methods 2018, 15, 681-684.
[17] P. A. Byrne, D. G. Gilheany, Chem. Soc. Rev. 2013, 42, 6670-6696.
[18] D. S. Wishart, et al., Nucleic Acids Res. 2018, 46, D608-D617.
[19] M. Rondanelli, F. Perdoni, V. Infantino, M. A. Faliva, G. Peroni, G. Iannello,
M. Nichetti, T. A. Alalwan, S. Perna, C. Cocuzza, J Anal Methods Chem
2019, 2019, 7247802.
[20] K. Matsushita, Y. Fujii, Y. Ano, H. Toyama, M. Shinjoh, N. Tomiyama, T.
Miyazaki, T. Sugisawa, T. Hoshino, O. Adachi, Appl. Environ. Microbiol.
2003, 69, 1959-1966.
Acknowledgements
We are grateful for funding by the Swedish Research Council (VR
2016-04423 / VR 2020-04707), the Swedish Cancer Foundation
(19 0347 Pj), Carl Tryggers Foundation (CTS 2018:820), and a
generous start-up grant from the Science for Life Laboratory to
D.G. This study made use of the NMR Uppsala infrastructure,
which is funded by the Department of Chemistry - BMC and the
Disciplinary Domain of Medicine and Pharmacy.
[21] G. A. Gowda, S. Zhang, H. Gu, V. Asiago, N. Shanaiah, D. Raftery, Expert
Rev. Mol. Diagn. 2008, 8, 617-633.
[22] L. Weisskopf, S. Schulz, P. Garbeva, Nat. Rev. Microbiol. 2021.
[23] C. Lee, C. Park, Int. J. Mol. Sci. 2017, 18.
[24] a) M. Trupp, H. Zhu, W. R. Wikoff, R. A. Baillie, Z. B. Zeng, P. D. Karp, O.
Fiehn, R. M. Krauss, R. Kaddurah-Daouk, PLoS One 2012, 7, e38386; b)
S. Wei, L. Liu, J. Zhang, J. Bowers, G. A. Gowda, H. Seeger, T. Fehm, H.
J. Neubauer, U. Vogel, S. E. Clare, D. Raftery, Mol. Oncol. 2013, 7, 297-
307.
Conflict of interest
[25] M. Jacob, A. L. Lopata, M. Dasouki, A. M. Abdel Rahman, Mass Spectrom.
Rev. 2019, 38, 221-238.
The authors declare no conflict of interest.
[26] Y. Wu, L. Li, J. Chromatogr. A 2016, 1430, 80-95.
[27]J. R. Bales, D. P. Higham, I. Howe, J. K. Nicholson, P. J. Sadler, Clin. Chem.
1984, 30, 426-432.
[28] D. Globisch, D. Pearson, A. Hienzsch, T. Brückl, M. Wagner, I. Thoma, P.
Thumbs, V. Reiter, A. C. Kneuttinger, M. Müller, S. A. Sieber, T. Carell,
Angew. Chem. Int. Ed. 2011, 50, 9739-9742.
Keywords: Bioorganic chemistry • chemoselectivity • mass
spectrometry • metabolites • microbiome
[1] a) T. S. B. Schmidt, J. Raes, P. Bork, Cell 2018, 172, 1198-1215; b) C.
Huttenhower, et al., Nature 2012, 486, 207-214; c) S. R. Gill, M. Pop, R. T.
DeBoy, P. B. Eckburg, P. J. Turnbaugh, B. S. Samuel, J. I. Gordon, D. A.
Relman, C. M. Fraser-Liggett, K. E. Nelson, Science 2006, 312, 1355-1359.
[2] a) A. Visconti, C. I. Le Roy, F. Rosa, N. Rossi, T. C. Martin, R. P. Mohney,
W. Li, E. de Rinaldis, J. T. Bell, J. C. Venter, K. E. Nelson, T. D. Spector,
M. Falchi, Nat Commun 2019, 10, 4505; b) C. Ballet, M. S. P. Correia, L. P.
Conway, T. L. Locher, L. C. Lehmann, N. Garg, M. Vujasinovic, S. Deindl,
J. M. Lohr, D. Globisch, Chem. Sci. 2018, 9, 6233-6239; c) M. S. Donia, M.
A. Fischbach, Science 2015, 349, 1254766; d) J. K. Nicholson, E. Holmes,
J. Kinross, R. Burcelin, G. Gibson, W. Jia, S. Pettersson, Science 2012,
336, 1262-1267; e) C. Whidbey, N. C. Sadler, R. N. Nair, R. F. Volk, A. J.
DeLeon, L. M. Bramer, S. J. Fansler, J. R. Hansen, A. K. Shukla, J. K.
Jansson, B. D. Thrall, A. T. Wright, J. Am. Chem. Soc. 2019, 141, 42-47.
[3] E. Vogtmann, J. J. Goedert, Br. J. Cancer 2016, 114, 237-242.
[4] a) A. Milshteyn, D. A. Colosimo, S. F. Brady, Cell Host Microbe 2018, 23,
725-736; b) A. R. Healy, S. B. Herzon, J. Am. Chem. Soc. 2017, 139,
14817-14824.
[5] a) M. Singh, A. Kapoor, A. Bhatnagar, Chem. Biol. Interact. 2015, 234, 261-
273; b) C. C. Benz, C. Yau, Nat. Rev. Cancer 2008, 8, 875-879; c) S. D.
Yan, X. Chen, A. M. Schmidt, J. Brett, G. Godman, Y. S. Zou, C. W. Scott,
C. Caputo, T. Frappier, M. A. Smith, Proc. Natl. Acad. Sci. U. S. A. 1994,
91, 7787-7791.
[6] P. Pinsky, L. Rabeneck, B. Lauby-Secretan, N. Engl. J. Med. 2018, 379,
301-302.
[7] a) B. C. Dickinson, C. J. Chang, Nat. Chem. Biol. 2011, 7, 504-511; b) E.
F. Holmquist, U. B. Keiding, R. Kold-Christensen, T. Salomon, K. A.
Jorgensen, P. Kristensen, T. B. Poulsen, M. Johannsen, Anal. Chem. 2017,
89, 5066-5071.
[8] R. L. Auten, J. M. Davis, Pediatr. Res. 2009, 66, 121-127.
[9] a) D. Globisch, A. Y. Moreno, M. S. Hixon, A. A. K. Nunes, J. R. Denery, S.
Specht, A. Hoerauf, K. D. Janda, Proc. Natl. Acad. Sci. U. S. A. 2013, 110,
4218-4223; b) M. M. Rinschen, J. Ivanisevic, M. Giera, G. Siuzdak, Nat.
Rev. Mol. Cell Biol. 2019, 20, 353-367; c) L. P. Conway, V. Rendo, M. S.
P. Correia, I. A. Bergdahl, T. Sjoblom, D. Globisch, Angew. Chem. Int. Ed.
Engl. 2020, 59, 14342-14346.
[10] A. Gil, D. Siegel, H. Permentier, D. J. Reijngoud, F. Dekker, R. Bischoff,
Electrophoresis 2015, 36, 2156-2169.
[11] a) S. Zhao, M. Dawe, K. Guo, L. Li, Anal. Chem. 2017, 89, 6758-6765; b)
P. Deng, R. M. Higashi, A. N. Lane, R. C. Bruntz, R. C. Sun, M. V.
Ramakrishnam Raju, M. H. Nantz, Z. Qi, T. W. Fan, Analyst 2017, 143,
311-322; c) R. Kold-Christensen, K. K. Jensen, E. Smedegard-Holmquist,
L. K. Sorensen, J. Hansen, K. A. Jorgensen, P. Kristensen, M. Johannsen,
Redox Biol 2019, 26, 101252.
[12] a) W. Lin, L. P. Conway, A. Block, G. Sommi, M. Vujasinovic, J. M. Lohr, D.
Globisch, Analyst 2020, 145, 3822-3831; b) L. P. Conway, N. Garg, W. Lin,
M. Vujasinovic, J. M. Lohr, D. Globisch, Chem. Commun. 2019, 55, 9080-
9083; c) N. Garg, L. P. Conway, C. Ballet, M. S. P. Correia, F. K. S. Olsson,
M. Vujasinovic, J. M. Lohr, D. Globisch, Angew. Chem. Int. Ed. 2018, 57,
13805-13809.
8
This article is protected by copyright. All rights reserved.