414
H. Firouzabadi et al.
LETTER
(8) Firouzabadi, H.; Shiriny, F. Tetrahedron 1996, 52, 14929.
(9) Firouzabadi, H.; Iranpoor, N.; Karimi, B. Synlett 1998, 739.
(10) Firouzabadi, H.; Iranpoor, N.; Karimi, B. J. Chem. Res., (Syn-
op.) accepted for publication.
(11) A typical experimental procedure is as follows: To a solution
of 2-phenyl-2-methyl-1,3-dithiolane 1a (393 mg, 2mmol), and
dry DMSO (469 mg, 6 mmol), in dry CH2Cl2 (20 mL) was ad-
ded WCl6 (634 mg, 1.6 mmol) and the resulting solution was
stirred at room temperature. The progress of the reaction was
monitored by TLC (CCl4 as eluent). After completion (30
min), the reaction was quenched with an aqueous solution of
NaOH (10%, 25 mL), and extracted with CH2Cl2 (3 × 25 mL).
The organic extracts were washed successively brine (15 mL),
and water (2 × 10 mL). The organic layer was separated and
dried over anhydrous Na2SO4 and the solvent was evaporated
under reduced pressure to afford the crude product. Further
purification was performed using chromatography over a
short column of silica gel (CCl4 as eluent) which after evapo-
ration of the solvent afforded the desired oily pure product 3a
(412 mg, 90% yield).
3a: 1H-NMR (CDCl3, 250 MHz) δ = 3.10 (m, 4H), 7.18 (m,
5H); 13C-NMR (CDCl3, 63 MHz) δ = 30.21, 32.20, 113.14,
126.28, 128.36, 128.46, 129.67, 145.75; MS (20 eV) m/z (re-
lative intensity) 228 (M+, 74.0), 200 (M+ - CH2=CH2, 26.3),
165 (36.3), 121 (100), 77 (15.9).
Scheme 2
To the best of our knowledge this method is the first ex-
ample of one-pot ring expansion-chlorination of 1,3-
dithianes and 1,3-dithiolanes derived from the corre-
sponding substituted acetophenones.
4a : 1H-NMR (CDCl3, 250 MHz) δ = 2.18 (m, 2H), 3.50-3.75
(m, 4H), 7.24-7.48 (m, 5H); 13C-NMR (CDCl3, 63 MHz) δ =
30.38, 31.97, 33.40, 120.58, 128.42, 129.67, 134.56, 140.01;
MS (20 eV) m/z (relative intensity) 242 (55.1), 168 (16.7), 136
(9.4), 121 (M/2, 12.0), 89 (25.7), 73 (100).
Further investigations about the new synthetic applica-
tions of WCl6 and its related compounds are under study
in our laboratories.
4b: 1H-NMR (CDCl3, 250 MHz) δ = 2.10-2.20 (m, 2H), 3.45-
3.50 (m, 4H), 7.24-7.36 (m, 4H); 13C-NMR (CDCl3, 63 MHz)
δ = 29.47, 33.12, 33.55, 121.29, 128.84, 131.44, 133.17,
134.54, 138.59; MS (20 eV) m/z (relative intensity) 276 (M+,
30.2), 202 (10.7), 170 (8.4), 138 (M/2, 12.2), 123 (20.2), 73
(100).
Acknowledgement
The authors appreciate the partial support of this work through a
grant from Shiraz University Research Council.
3b: 1H-NMR (CDCl3, 250 MHz) δ = 3.15 (m, 4H), 7.35-7.50
(m, 9H); 13C-NMR (CDCl3, 63 MHz) δ = 29.72, 31.83,
112.95, 125.40-129.70 (8 carbon atoms), 138,93; MS (20 eV)
m/z (relative intensity) 304 (M+, 65.7), 276 (M+ - CH2=CH2,
29.3), 241 (18.0), 197 (100.0), 153 (12.0).
References and Notes
3c: 1H-NMR (CDCl3, 250 MHz) δ = 3.27-3.33 (m, 4H), 6.64
(s, 1H), 7.82-8.30 (dd, 4H); 13C-NMR (CDCl3, 63 MHz) δ =
27.11, 27.17, 117.52, 123.85, 123.86, 125.67, 126.12, 146.15;
MS (20 eV) m/z (relative intensity) 240 (M+, 100), 211 (M+ -
CH2=CH2, 4.0), 166 (26.1), 121 (26.2), 89 (11.5).
(1) Chen, C. H. Tetrahedron Lett.1976, 25.
(2) Chen, C. H.; Donatelli, B. A. J. Org. Chem. 1976, 41, 3053.
(3) Janssen, J. W. A. M.; Kwart, H. J. Org. Chem.1977, 42, 1530.
(4) Bulman-Page, P. C.; Ley, S. V.; Morton,J. A. J. Chem. Soc.,
Perkin Trans. 1 1981, 457.
4d: 1H-NMR (CDCl3, 250 MHz) δ = 2.20-2.29 (m, 2H), 3.30-
3.70 (m, 4H), 6.28 (s, 1H), 7.61-8.15 (dd, 4H); 13C-NMR
(CDCl3, 63 MHz) δ = 29.9, 30.74, 32.95, 121.28, 122.87,
123.57, 127.72, 127.75, 146.67; MS (20 eV) m/z (relative in-
tensity) 254(M+, 88.6), 166 (12.4), 150 (11.9), 106 (39.5), 89
(37.3).
(5) Francisco, C. G.; Freire, R.; Hernandez, R.; Salazar, J. A.;
Suarez, E. Tetrahedron Lett. 1984, 25. 1621.
(6) Tani, H.; Inamasu, T.; Tamura, R.; Suzuki, H. Chem. Lett.
1990, 1323.
(7) Tani, H.; Inamasu, T.; Masumoto, K.; Tamura, R.; Shimizu,
H.; Suzuki, H. Phosphorous, Sulfur, and Silicon 1992, 67,
261.
Synlett 1999, No. 4, 413–414 ISSN 0936-5214 © Thieme Stuttgart · New York