RSC Advances
Paper
for 24 h. Finally, the membrane was transferred into an argon- 11 B. K. Mandal, C. J. Walsh, T. Sooksimuang, S. J. Behroozi,
lled glove box and placed in an EC: PC (v/v, 1 : 1) solution for
soaking.
S. Kim, Y. T. Kim, E. S. Smotkin, R. Filler and C. Castro,
Chem. Mater., 2000, 12, 6.
12 X.-G. Sun and J. B. Kerr, Macromolecules, 2005, 39, 362–372.
13 X.-G. Sun, C. L. Reeder and J. B. Kerr, Macromolecules, 2004,
37, 2219–2227.
14 G. Cakmak, A. Verhoeven and M. Jansen, J. Mater. Chem.,
2009, 19, 4310–4318.
15 R. Meziane, J.-P. Bonnet, M. Courty, K. Djellab and
M. Armand, Electrochim. Acta, 2011, 57, 14–19.
16 S. Feng, D. Shi, F. Liu, L. Zheng, J. Nie, W. Feng, X. Huang,
M. Armand and Z. Zhou, Electrochim. Acta, 2013, 93, 254–
263.
Electrode fabrication
Briey, 80 wt% of LiFePO4, 10 wt% of acetylene black, and
10 wt% of poly(vinylidene uoride) (PVDF) were mixed in NMP
and magnetically stirred to form a slurry. The homogenous
slurry was coated on an Al foil substrate and dried at 80 ꢂC
overnight under vacuum.
Electrochemical measurements
17 S. Liang, U. H. Choi, W. Liu, J. Runt and R. H. Colby, Chem.
Mater., 2012, 24, 2316–2323.
The ionic conductivity of the LiPGAA/PVdF-HFP blend
membrane was measured using electrochemical impedance
spectroscopy (Zahner, Zennium) over the frequency range of 1
Hz to 4 MHz at an AC amplitude of 5 mV. The electrochemical
stability measurement was conducted using a CHI workstation
in the range from 2.5 V to 6.5 V at the rate of 1 mV sꢁ1. A lithium
foil was employed as a counter and reference electrode. The
lithium ion transference number was measured using the
method proposed by Evans40 by sandwiching the membrane
between two lithium foil electrodes. Aer the initial resistance
was measured, a potential of 10 mV was applied until a steady
state was reached. Subsequently, the nal resistance was
measured by EIS. The galvanic charge–discharge experiments
were carried out with the voltage in the range of 2.5–3.8 V, using
a multichannel battery testing instrument Arbin BT-2000.
18 S. M. Renaud Bouchet, R. Meziane, A. Aboulaich, L. Lienafa,
J.-P. Bonnet, T. N. T. Phan, D. Bertin, D. Gigmes, D. Devaux,
R. Denoyel and M. Armand, Nat. Mater., 2013, 12, 6.
19 X. J. Wang, Z. H. Liu, C. J. Zhang, Q. S. Kong, J. H. Yao,
P. X. Han, W. Jiang, H. X. Xu and G. L. Cui, Electrochim.
Acta, 2013, 92, 132–138.
20 Y. S. Zhu, X. J. Wang, Y. Y. Hou, X. W. Gao, L. L. Liu, Y. P. Wu
and M. Shimizu, Electrochim. Acta, 2013, 87, 113–118.
21 G. Xu, Y. Zhang, R. Rohan, W. Cai and H. Cheng, Electrochim.
Acta, 2014, 139, 264–269.
22 Y. Zhang, C. A. Lim, W. Cai, R. Rohan, G. Xu, Y. Sun and
H. Cheng, RSC Adv., 2014, 4, 43857–43864.
23 Y. Zhang, R. Rohan, W. Cai, G. Xu, Y. Sun, A. Lin and
H. Cheng, ACS Appl. Mater. interfaces, 2014, 6, 17534–17542.
24 Y. Zhang, R. Rohan, Y. Sun, W. Cai, G. Xu, A. Lin and
H. Cheng, RSC Adv., 2014, 4, 21163–21170.
Acknowledgements
25 T. J. Barbarich, S. M. Miller, O. P. Anderson and S. H. Strauss,
J. Mol. Catal. A: Chem., 1998, 128, 289–331.
26 S. M. Ivanova, B. G. Nolan, Y. Kobayashi, S. M. Miller,
O. P. Anderson and S. H. Strauss, Chem.–Eur. J., 2001, 7,
503–510.
The authors gratefully acknowledge support of this study by a
start-up grant from NUS, a Tier 1 grant from Singapore Ministry
of Education, a POC grant from National Research Foundation
of Singapore, a Singapore DSTA grant and the grants from the
National Natural Science Foundation of China (no. 21233006
and 21473164).
27 H. C. Brown and R. F. McFarlin, J. Am. Chem. Soc., 1958, 80,
5372–5376.
28 S. Tsujioka, B. G. Nolan, H. Takase, B. P. Fauber and
S. H. Strauss, J. Electrochem. Soc., 2004, 151, A1418–A1423.
29 H. Tokuda, S.-i. Tabata, M. A. B. H. Susan, K. Hayamizu and
M. Watanabe, J. Phys. Chem. B, 2004, 108, 11995–12002.
30 H. Tokuda and M. Watanabe, Electrochim. Acta, 2003, 48,
2085–2091.
Notes and references
1 J. M. Tarascon and M. Armand, Nature, 2001, 414, 359–367.
2 J. Maier, Nat. Mater., 2005, 4, 805–815.
3 P. G. Bruce, B. Scrosati and J.-M. Tarascon, Angew. Chem., Int.
Ed., 2008, 47, 2930–2946.
31 K. Onishi, M. Matsumoto, Y. Nakacho and K. Shigehara,
Chem. Mater., 1996, 8, 469–472.
4 B. Scrosati, Nature, 1995, 373, 557–558.
5 J. B. Goodenough and K.-S. Park, J. Am. Chem. Soc., 2013, 135, 32 T. Fujinami, A. Tokimune, M. A. Mehta, D. F. Shriver and
1167–1176.
G. C. Rawsky, Chem. Mater., 1997, 9, 2236–2239.
33 T. Aoki, A. Konno and T. Fujinami, J. Electrochem. Soc., 2004,
151, A887–A890.
34 G. D. Xu, Y. B. Sun, R. Rohan, Y. F. Zhang, W. W. Cai and
H. S. Cheng, J. Mater. Sci., 2014, 49, 6111–6117.
35 Y. Zhang, Y. Sun, G. Xu, W. Cai, R. Rohan, A. Lin and
H. Cheng, Energy Technol., 2014, 2, 643–650.
6 K. Xu, Chem. Rev., 2004, 104, 4303–4418.
7 M. Doyle, T. F. Fuller and J. Newman, Electrochim. Acta, 1994,
39, 2073–2081.
8 D. J. Bannister, G. R. Davies, I. M. Ward and J. E. McIntyre,
Polymer, 1984, 25, 1291–1296.
9 N. Kobayashi, M. Uchiyama and E. Tsuchida, Solid State
Ionics, 1985, 17, 307–311.
10 K. E. Thomas, S. E. Sloop, J. B. Kerr and J. Newman, J. Power
Sources, 2000, 89, 132–138.
36 R. Rohan, Y. Sun, W. Cai, K. Pareek, Y. Zhang, G. Xu and
H. Cheng, J. Mater. Chem. A, 2014, 2, 2960–2967.
32348 | RSC Adv., 2015, 5, 32343–32349
This journal is © The Royal Society of Chemistry 2015