Communication
ChemComm
Conflicts of interest
There are no conflicts to declare.
Notes and references
1
2
3
A. B. Ormond and H. S. Freeman, Materials, 2013, 6, 817–840.
Z. Y. Li and K. B. Grant, RSC Adv., 2016, 6, 24617–24634.
B. M. Luby, C. D. Walsh and G. Zheng, Angew. Chem., Int. Ed., 2019,
58, 2558–2569.
Fig. 5 (A) Representative superimposed fluorescence microscopy images
reveal intracellular localization of dye 5 (red) in ES2 cancer cells after incubation
for 24 h followed by staining nuclei with Hoechst 33342 (blue). (B) ES2 cancer
cell viability for: cells – no treatment; light-cells exposed to a 808 nm laser
4 R. Bonnett, Chem. Soc. Rev., 1995, 24, 19–33.
5 M. Ochsner, J. Photochem. Photobiol., B, 1997, 39, 1–18.
6
S. Hatz, L. Poulsen and P. R. Ogilby, Photochem. Photobiol., 2008, 84,
284–1290.
7 G. M. Makrigiorgos, Met. Ions Biol. Syst., 1999, 36, 521–545.
1
ꢁ2
ꢁ1
(0.3 W cm ) for 10 min; (5) – cells incubated with dye 5 (10 mg mL = 20 mM)
8
9
W. K. Pogozelski and T. D. Tullius, Chem. Rev., 1998, 98, 1089–1108.
M. K. Kuimova, M. Hoffmann, M. U. Winters, M. Eng, M. Balaz,
I. P. Clark, H. A. Collins, S. M. Tavender, C. J. Wilson, B. Albinsson,
H. L. Anderson, A. W. Parker and D. Phillips, Photochem. Photobiol.
Sci., 2007, 6, 675–682.
for 24 h under dark conditions; (5) + light – cells incubated with dye 5
ꢁ1
ꢁ2
(
10 mg mL ) for 24 h and exposed to a 808 nm laser (0.3 W cm ) for
10 min. *p o 0.05 when compared with non-treated cells.
1
0 S. K. Powers and M. R. Detty, in Photodynamic Therapy of Neoplastic Disease,
ed. D. Kessel, CRC Press, Boca Raton, 1990, ch. 19, vol. 1, pp. 307–328.
1 P. M. Wood, Biochem. J., 1988, 253, 287–289.
images revealed that the intrinsic NIR fluorescence signal of
dye 5 was predominantly localized in the perinuclear region
1
1
2 D. Rehm and A. H. Weller, Ber. Bunsen-Ges., 1969, 73, 834–839.
and partially in nuclei of cancer cells (Fig. 5A). To assess the 13 U. Basu, I. Khan, A. Hussain, P. Kondaiah and A. R. Chakravarty,
Angew. Chem., 2012, 51, 2658–2661.
efficiency of the internalized molecules to generate intracellular
ROS upon light activation and cause a phototherapeutic effect,
1
4 J. Atchison, S. Kamila, H. Nesbitt, K. A. Logan, D. M. Nicholas,
C. Fowley, J. Davis, B. Callan, A. P. McHale and J. F. Callan, Chem.
Commun., 2017, 53, 2009–2012.
15 T. Jing, L. Fu, L. Liu and L. Yan, Polym. Chem., 2016, 7, 951–957.
6 D. S. Keller, T. Ishizawa, R. Cohen and M. Chand, Lancet Gastroenterol.
ES2 cancer cells were treated with dye 5 for 24 h and then exposed
ꢁ2
to a 808 nm laser diode (0.3 W cm ) for 10 min. Intracellular
1
0
0
ROS levels were measured with 2 ,7 -dichlorodihydrofluorescein
Hepatol., 2017, 2, 757–766.
36
diacetate (DCFH-DA), a fluorescent probe that detects hydroxyl 17 B. A. Armitage, Top. Curr. Chem., 2005, 253, 55–76.
1
8 C. T. Mapp, E. A. Owens, M. Henary and K. B. Grant, Bioorg. Med.
Chem. Lett., 2014, 24, 214–219.
radicals and other oxidants. The viability of the treated cells was
37
evaluated with a Calcein AM assay. The obtained results revealed
1
9 B. Akerman and E. Tuite, Nucleic Acids Res., 1996, 24, 1080–1090.
that total intracellular ROS levels in the treated cells increased by 20 K. P. Mahon, R. F. Ortiz-Meoz, E. G. Prestwich and S. O. Kelley,
Chem. Commun., 2003, 1956–1957, DOI: 10.1039/b306008j.
1 T. C. Barros, S. H. Toma, H. E. Toma, E. L. Bastos and M. S. Baptista,
J. Phys. Org. Chem., 2010, 23, 893–903.
B2 times (Fig. S20, ESI†) while the cell viability decreased by
B53% (Fig. 5B) when compared to controls.
2
In summary, we have synthesized two symmetrical carbo- 22 D. Oushiki, H. Kojima, T. Terai, M. Arita, K. Hanaoka, Y. Urano and
T. Nagano, J. Am. Chem. Soc., 2010, 132, 2795–2801.
3 A. Gorman, J. Killoran, C. O’Shea, T. Kenna, W. M. Gallagher and
D. F. O’Shea, J. Am. Chem. Soc., 2004, 126, 10619–10631.
cyanine dyes in which dual 4-quinolinium rings are linked to a
pentamethine bridge meso-substituted with either H (4) or Cl
2
(
5). The electron withdrawing chlorine atom substantially 24 G. Beckford, E. Owens, M. Henary and G. Patonay, Talanta, 2012, 92,
4
5–52.
5 M. Wang, G. L. Silva and B. A. Armitage, J. Am. Chem. Soc., 2000, 122,
977–9986.
stabilizes dye 5 in aqueous DNA solutions (Fig. S7B and D,
ESI†). When bound to DNA in a conformationally flexible,
2
9
monomeric fashion, single photon 830 nm excitation of the 26 M. Maj, J. Jeon, R. W. Gora and M. Cho, J. Phys. Chem. A, 2013, 117,
ꢀ
5909–5918.
dye generates OH radicals that produce direct strand breaks in
2
2
7 Y. Kawabe and S. Kato, Dyes Pigm., 2012, 95, 614–618.
8 G. Yang, J. Z. Wu, L. Wang, L. N. Ji and X. Tian, J. Biol. Inorg. Chem.,
1997, 66, 141–144.
9 R. Ruiz, B. Garcia, J. Garcia-Tojal, N. Busto, S. Ibeas, J. M. Leal,
C. Martins, J. Gaspar, J. Borras, R. Gil-Garcia and M. Gonzalez-
Alvarez, J. Biol. Inorg. Chem., 2010, 15, 515–532.
plasmid DNA (pH 7.0, no piperidine or base). This is significant
not only because 830 nm light deeply penetrates biological
tissue, but also because of the intrinsic limitations on ROS
production imposed by the low excited state energies of many
2
near-IR chromophores. We have additionally shown that dye 5 30 D. E. Williams, C. M. Fischer, M. Kassai, L. Gude, M. J. Fernandez,
A. Lorente and K. B. Grant, J. Inorg. Biochem., 2017, 168, 55–66.
is taken up by ES2 cancer cells and then generates phototoxic
3
3
1 P. B. Merkel and D. R. Kearns, J. Am. Chem. Soc., 1972, 94, 7244–7253.
2 A. Singh, G. W. Koroll and R. B. Cundall, Radiat. Phys. Chem., 1982,
19, 137–146.
3 M. Price, J. J. Reiners, A. M. Santiago and D. Kessel, Photochem.
Photobiol., 2009, 85, 1177–1181.
4 C. Schumann, O. Taratula, O. Khalimonchuk, A. L. Palmer, L. M.
Cronk, C. V. Jones, C. A. Escalante and O. Taratula, Nanomedicine,
ROS when illuminated with near-infrared light. Our findings
suggest that 4-quinolinium-based carbocyanine dyes may have
the potential to serve as hydroxyl radical sensitizing agents in
phototherapeutic applications.
This work was supported by NIH grants to OT (R37CA234006)
and to MH (R01EB022230) and by grants to MH from the Brains
and Behaviour Seed Grant Program, the Atlanta Clinical & Trans-
lational Science Institute (Healthcare Innovation Program), and the
Georgia Research Alliance Ventures Phase 1 Grant Program. The
authors thank Eduardo Soriano for assistance with synthesis and
Matthew D. Laramie for recording NMR spectra.
3
3
2015, 11, 1961–1970.
3
5 X. Li, C. Schumann, H. A. Albarqi, C. J. Lee, A. W. G. Alani, S. Bracha,
M. Milovancev, O. Taratula and O. Taratula, Theranostics, 2018, 8,
767–784.
6 O. Taratula, C. Schumann, M. A. Naleway, A. J. Pang, K. J. Chon and
O. Taratula, Mol. Pharmaceutics, 2013, 10, 3946–3958.
7 R. K. Dani, C. Schumann, O. Taratula and O. Taratula, AAPS
PharmSciTech, 2014, 15, 963–972.
3
3
12670 | Chem. Commun., 2019, 55, 12667--12670
This journal is ©The Royal Society of Chemistry 2019