Organometallics
Communication
Scheme 3. Synthesis of Functionalized Siloxanes: (A)
Conversion of 4d to Siloxane 9 with Retention of the Boryl
Group; (B) Conversion of 9 to Arylmethyl- and
Innovative Areas “Molecular Activation Directed Toward
Straightforward Synthesis (No. 25105728)” from the JSPS.
a
REFERENCES
Hydroxymethyl-Substituted Siloxanes 10 and 11
■
(
2
1) Cordes, D. B.; Lickiss, P. D.; Rataboul, F. Chem. Rev. 2010, 110,
081−2173.
(2) (a) Plueddemann, E. P. Silane Coupling Agents, 2nd ed.; Springer
Science + Business Media: New York, 1991. (b) Mittal, K. L. Silanes
and Other Coupling Agents; CRC Press: New York, 2009; Vol. 5.
(
3) (a) Tyler, L. J.; Sommer, L. H.; Whitmore, F. C. J. Am. Chem. Soc.
948, 70, 2876−2878. (b) Manoso, A. S.; Ahn, C.; Soheili, A.; Handy,
C. J.; Correia, R.; Seganish, W. M.; DeShong, P. J. Org. Chem. 2004,
9, 8305−8314.
4) Hayashi, T.; Konishi, M.; Okamoto, Y.; Kabeta, K.; Kumada, M. J.
Org. Chem. 1986, 51, 3772−3781.
5) (a) Benkeser, R. A.; Hickner, R. A. J. Am. Chem. Soc. 1958, 80,
298−5300. (b) Green, M.; Spencer, J. L.; Stone, G. A.; Tsipis, C. A. J.
Chem. Soc., Dalton Trans. 1977, 1525−1529.
6) (a) Furuya, N.; Sukawa, T. J. Organomet. Chem. 1975, 96, C1.
b) Murata, M.; Suzuki, K.; Watanabe, S.; Masuda, Y. J. Org. Chem.
997, 62, 8569−8571. (c) Murata, M.; Ishikura, M.; Nagata, M.;
Watanabe, S.; Masuda, Y. Org. Lett. 2002, 4, 1843−1845.
7) Ward, W. J.; Ritzer, A.; Carroll, K. M.; Flock, J. W. J. Catal. 1986,
00, 240−249.
8) For reviews, see: (a) Ohmura, T.; Suginome, M. Bull. Chem. Soc.
1
6
(
(
5
(
(
1
(
1
(
a
Isolated yields are given.
Jpn. 2009, 82, 29−49. (b) Suginome, M.; Ohmura, T. In Boronic Acids,
2
nd ed.; Hall, D. G., Ed.; Wiley-VCH: Weinheim, Germany, 2011; Vol.
1
, pp 171−212. (c) Oestreich, M.; Hartmann, E.; Mewald, M. Chem.
The boryl group in 9 could be utilized for further
functionalization and bond formation (Scheme 3B). Suzuki−
Miyaura coupling of 9 with aryl bromides was carried out in
Rev. 2013, 113, 402−441.
(
9) (a) Ohmura, T.; Torigoe, T.; Suginome, M. J. Am. Chem. Soc.
012, 134, 17416−17419. (b) Ohmura, T.; Torigoe, T.; Suginome, M.
Organometallics 2013, 32, 6170−6173.
10) For reviews on C−H borylation, see: (a) Mkhalid, I. A. I.;
2
toluene at 110−135 °C using DPPF/Pd catalyst with Ba(OH)
2
9
b,17,18
as a base to give 10a−d in good yields (Scheme 3B, top).
(
Treatment of 9 with H O under basic conditions allowed the
2
2
Barnard, J. H.; Marder, T. B.; Murphy, J. M.; Hartwig, J. F. Chem. Rev.
2010, 110, 890−931. (b) Ishiyama, T.; Miyaura, N. In Boronic Acids,
2nd ed.; Hall, D., Ed.; Wiley-VCH: Weinheim, Germany, 2011; Vol 1,
p 135.
formation of hydroxymethyl-substituted siloxane 11 in 80%
19
yield (Scheme 3B, bottom).
In conclusion, we have established a synthetic method for
boryl-functionalized methylsilanes bearing three hydrolyzable
groups on silicon. Methyltris(neopentyloxy)silane was found to
be a suitable substrate for chemoselective iridium-catalyzed C−
H borylation at the methyl group on silicon. The neopentyloxy
group of the borylated product was used as a hydrolyzable
group in the formation of the Si−O−Si linkage with retention
of the boryl group. Further utilization of this new T unit for the
synthesis of functionalized polysiloxanes is being undertaken in
this laboratory.
(
11) It has been reported that Cl SiMe reacts with 1,10-phenanthro-
3
line (phen) to form the hexacoordinated silicon complex Cl (Me)-
Si(phen): Fester, G. W.; Eckstein, J.; Gerlach, D.; Wagler, J.; Brendler,
E.; Kroke, E. Inorg. Chem. 2010, 49, 2667−2673.
(
reaction with the corresponding alcohols in the presence of
triethylamine.
(
3
12) Trialkoxy(methyl)silanes 3b−d were prepared from Cl SiMe by
3
13) (a) Liskey, C. W.; Hartwig, J. F. J. Am. Chem. Soc. 2012, 134,
12422−12425. (b) Li, Q.; Liskey, C. W.; Hartwig, J. F. J. Am. Chem.
Soc. 2014, 136, 8755−8765.
(
14) Ohmura, T.; Torigoe, T.; Suginome, M. Chem. Commun. 2014,
ASSOCIATED CONTENT
Supporting Information
50, 6333−6336.
15) For rate acceleration by t-BuOK in iridium-catalyzed C(sp )−H
borylation, see: Eliseeva, M. N.; Scott, L. T. J. Am. Chem. Soc. 2012,
34, 15169−15172.
16) For n-Bu NF-mediated redistribution of polysiloxanes with
■
2
(
*
S
1
(
4
alkoxysilanes, see: Bassindale, A. R.; Liu, Z.; Parker, D. J.; Taylor, P. G.;
Horton, P. N.; Hursthouse, M. B.; Light, M. E. J. Organomet. Chem.
2
(
003, 687, 1−11.
17) (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457−2483.
For use of Ba(OH) in Suzuki−Miyaura coupling, see: (b) Watanabe,
2
AUTHOR INFORMATION
■
T.; Miyaura, N.; Suzuki, A. Synlett 1992, 1992, 207−210.
(18) The use of 4d in Suzuki−Miyaura coupling was also examined.
The reaction with 4-bromotoluene at 110 °C under the conditions
*
*
Notes
(
19) NaHCO was a suitable base to obtain 11 in high yield. Use of
3
The authors declare no competing financial interest.
NaOH instead of NaHCO resulted in a low yield of 11, probably due
3
to redistribution of the Si−O−Si linkage.
ACKNOWLEDGMENTS
This work was supported by Grants-in-Aid for Scientific
Research (B) (No. 26288048) and Scientific Research on
■
C
Organometallics XXXX, XXX, XXX−XXX