Synthesis of GABA
Letters in Drug Design & Discovery, 2010, Vol. 7, No. 1 13
[15]
[16]
[17]
Englard, S.; Blanchard, J.S.; Midelfort, C.F. ꢀ-Butyrobetaine hydroxylase:
stereochemical course of the hydroxylation reaction. Biochemistry, 1985, 24,
1110-1116.
Krapcho, A.P. Synthetic applications of dealkoxycarbonylations of malonate
esters, ꢃ-keto esters, ꢁ-cyano esters and related compounds in dipolar aprotic
media – Parts I and II. Synthesis, 1982, 805-822, 893-914.
Krapcho, A.P.; Weimaster, J.F.; Eldridge, J.M.; Jahngen Jr., E.G.E.; Lovey,
A.J.; Stephens, W.P. Synthetic applications and mechanism studies of the
decarbalkoxylations of geminal diesters and related systems effected in
Me2SO by water and/or water with added salts. J. Org. Chem., 1978, 43,
138-147.
Overberger, C.G.; Wang, D.W.; Hill, R.K.; Krow, G.R.; Ladner, D.W. Abso-
lute configuration of 2,7-diazaspiro[4,4]nonane. A reassignment. J. Org.
Chem., 1981, 46, 2757-2764.
Raap, J.; Wolthuis, W.N.E.; Hehenkamp, J.J.J.; Lugtenburg, J. Enantioselec-
tive syntheses of isotopically labelled ꢁ-amino acids. Preparation of specifi-
cally 13C-labelled L-lysines. Amino Acids, 1995, 8, 171-186.
Padgett, H.C.; Csendes, I.G.; Rapoport, H. The alkoxycarbonyl moiety as a
blocking group. A generally useful variation of the malonic ester synthesis. J.
Org. Chem., 1979, 44, 3492-3496.
3 or C-4 by using an appropriate deuterated reagent in one of the
three functional group transformation steps.
ACKNOWLEDGEMENTS
We thank the Natural Sciences and Engineering Research
Council of Canada (NSERC) for research funding; scholarships to
RDW and MCC were kindly provided by NSERC and the Walter
C. Sumner Foundation, respectively. We are indebted to M.
Gardner for assistance with initial experiments, and NMR-3 and
MMSLab for providing NMR and mass spectra.
[18]
[19]
REFERENCES
[20]
[1]
(a) Cooper, J.R.; Bloom, F.E.; Roth, R.H. The Biochemical Basis of Neuro-
pharmacology, 8th ed.; Oxford University Press: New York, 2003; pp.105-
127; (b) Alger, B.E.; Le Beau, F.E.N. In Pharmacology of GABA and Gly-
cine Neurotransmission; Möhler, H. Ed.; Springer: Berlin, 2001; Vol. 150;
pp. 3-76.
[21]
[22]
Haller, A. Sur un nouveau mode de formation des ethers cyanomalonique et
benzoylcyanacétique. C.R. Acad. Sci., 1887, 105, 169-171.
Cadogan, J.I.G.; Hey, D.H.; Sharp, J.T. Synthetic aspects of free radical
addition reactions. Part V. Alkylation of compounds containing activated
methylene and methane groups. J. Chem. Soc. (C), 1966, 1743-1753.
Mingnonac, G.; Miquel, R.; Bonnemaison, C. Étude spectrophotométrique de
l’ion cyanomalonique. Application au dosage spectrophotométrique de l’ion
Fe3+. Bull. Soc. Chim. France, 1958, 1323-1330.
Brzezinski, B.; Schroeder, G.; Olejnik, J.; Jarczewski, A.; Grech, E.; Milart,
P. FTIR and 1H NMR studies of proton transfer reactions from ‘C-acids’ to
N-bases in acetonitrile. J. Mol. Struct., 1997, 406, 99-106.
[2]
[3]
Wong, C.G.T.; Bottiglieri, T.; Snead III, O.C. GABA, ꢀ-hydroxybutyric acid,
and neurological disease. Ann. Neurol., 2003, 54, S3-S12.
Thomsen, C.; Ebert, B. In Glutamate and GABA Receptors and Transport-
ers. Structure, Function and Pharmacology; Egebjerg, J.; Schousboe, A.;
Krogsgaard-Larsen, P., Eds.; Taylor & Francis: London and New York,
2002; pp. 407-427.
[23]
[24]
[4]
[5]
(a) Korpi, E.R.; Gründer, G.; Lüddens, H. Drug interactions at GABAA
receptors. Prog. Neurobiol., 2002, 67, 113-159; (b) Meldrum, B.S.; Whiting,
P. In Pharmacology of GABA and Glycine Neurotransmission; Möhler, H.
Ed.; Springer: Berlin, 2001; Vol. 150; pp. 173-194.
Song, Y.; Shenwu, M.; Dhossche, D.M.; Liu, Y.M. A capillary liquid chro-
matographic/tandem mass spectrometric method for the quantification of ꢀ-
aminobutyric acid in human plasma and spinal fluid. J. Chromatogr. B, 2005,
295-302.
[25]
[26]
Basheer, A.; Yamataka, H.; Ammal, S.C.; Rappoport, Z. Enols of substituted
cyanomalonates. J. Org. Chem., 2007, 72, 5297-5312.
(a) Spencer, J.N.; Holmboe, E.S.; Kirshenbaum, M.R.; Firth, D.W.; Pinto,
P.B. Solvent effects on the tautomeric equilibrium of 2,4-pentanedione. Can.
J. Chem., 1982, 60, 1178-1182; (b) Murthy, A.S.N.; Balasubramanian, A.;
Rao, C.N.R. Spectroscopic studies of keto-enol equilibria. Part 1. Solvent ef-
fects. Can. J. Chem., 1962, 40, 2267-2271.
(a) Reliquet, F.; Reliquet, A.; Sharrard, F.; Meslin, J.-C.; Quiniou, H. En-
hancements heteroatomiques et leurs produits de cyclization–VII. Synthese
et fonctionnalisation de ꢃ-lactames a partir de dihydrothiazines–etude stereo-
chimique. Phosphorous and Sulfur, 1985, 24, 279-289; (b) Snyder, H.R.;
Eliel, E.L. Carbon alkylations with 1-methylgramine and its methiodide. J.
Am. Chem. Soc., 1949, 71, 663-669.
de la Mare, P.B.D.; Swedlund, B.E. In The Chemistry of the Carbon-Halogen
Bond; Patai, S., Ed.; John Wiley & Sons: London, 1973; Part 1, pp. 460-462.
Ganem, B.; Osby, J.O. Synthetically useful reactions with metal boride and
aluminide catalysts. Chem. Rev., 1986, 86, 763-780.
Simpson, T.J. Application of isotopic methods to secondary metabolic path-
ways. Top. Curr. Chem., 1998, 195, 1-48.
(a) Gavin, S.S.; Equi, A.M.; Robins, D.J. Mechanistic studies on diamine
oxidase: oxidation of ꢁ,ꢄ-diamines does not involve an enamine intermedi-
ate. Can. J. Chem., 1994, 72, 31-34; (b) Leitch, L.C. Organic deuterium
compounds XVI. Synthesis of ꢁ-deuterated alkyl nitriles. Can. J. Chem.,
1957, 35, 345-347; (c) Edwards III, W.B.; Glenn, D.F. Synthesis of Cyclo-
propyl Cyanide-2,2-D2. J. Labelled Compd. Radiopharm., 1976, 12, 145-
151.
Grossert, J.S.; Cook, M.C.; White, R.L. The influence on structural features
on facile McLafferty-type, even-electron rearrangements in tandem mass
spectra of carboxylate ions. Rapid Commun. Mass Spectrom., 2006, 20,
1511-1516.
[6]
[7]
Huizinga, J.D.; Teelken, A.W.; Muskiet, F.A.J.; Van Der Meulen, J.; Wolth-
ers, B.G. Identification and quantification of gamma-aminobutyric acid in
human cerebrospinal fluid by gas chromatography-mass spectrometry. Re-
cent Dev. Mass Spectrom. Biochem. Med., 1977, 1, 217-227.
Bertilsson, L.; Costa, E. Mass fragmentation quantification of glutamic acid
and ꢀ-aminobutyric acid in cerebellar nuclei and sympathetic ganglia of rats.
J. Chromatogr., 1976, 118, 395-402.
[27]
[8]
[9]
Davis, B. The synthesis of 4-aminobutanoic acid-2,2-2H2 and -4,4-2H2 and
progabide-2,2-2H2 and -4,4-2H2. J. Labelled Compd. Radiopharm., 1987, 24,
1221-1227.
[28]
[29]
[30]
[31]
(a) Yarnell, A. Heavy-hydrogen drugs turn heads again. Chem. Eng. News
2009, 87 (June 22), 36-39; (b) Shao, L.; Abolin, C.; Hewitt, M.C.; Koch, P.;
Varney, M. Derivatives of tramadol for increased duration of effect. Bioorg.
Med. Chem. Lett., 2006, 16, 691-694.
[10]
[11]
Van Haverbeke, Y.; Muller, R.N.; Vander Elst, L. Conformational changes
of amino acids monitored by deuterium nuclear relaxation rate. Magn. Reson.
Chem., 1986, 24, 284-286.
Asada, Y.; Tanizawa, K.; Sawada, S.; Suzuki, T.; Misono, H.; Soda, K.
Stereochemistry of meso-ꢁ,ꢂ-diaminopimelate decarboxylase reaction: the
first evidence for pyridoxal 5’-phosphate dependent decarboxylation with in-
version of configuration. Biochemistry, 1981, 20, 6881-6886.
Yu, P.H.; Durden, B.A.; Davis, B.A.; Boulton, A.A. Deuterium isotope effect
in ꢀ-aminobutyric acid transamination: determination of rate-limiting step. J.
Neurochem., 1987, 48, 440-446.
Callery, P.S.; Stogniew, M.; Geelhaar, L.A. Detection of the in vivo conver-
sion of 2-pyrrolidinone to ꢀ-aminobutyric acid in mouse brain. Biomed. Mass
Spectrom., 1979, 6, 23-26.
Ahern, D.G.; Laseter, A.G.; Filer, C.N. The synthesis and characterization of
[2,3-3H] gamma-amino-butyric acid via 4-aminotetrolic acid at high specific
activity. Appl. Radiat. Isot., 2003, 58, 477-479.
[32]
[33]
[12]
[13]
[14]
McLafferty, F.W. Mass spectrometric analysis. Aliphatic nitriles. Anal.
Chem., 1962, 34, 26-30.