36
M.L. Mascotti et al. / Journal of Molecular Catalysis B: Enzymatic 82 (2012) 32–36
Table 5
References
Co-solvent influence on the biotransformation of substrate 1 using A. japonicus.
[1] E. Wojaczynska, J. Wojaczynski, Chem. Rev. 110 (2010) 4303–4435.
[2] J. Legros, J.R. Delhi, C. Bolm, Adv. Synth. Catal. 347 (2005) 19–31.
[3] C.J. Cavallito, J.H. Bailey, J. Am. Chem. Soc. 66 (1944) 1950–1951.
[4] C.J. Morris, J.F. Thompson, J. Am. Chem. Soc. 78 (1956) 1605–1608.
[5] K.H. Kyung, H.P. Fleming, J. Food Sci. 59 (1994) 350–355.
[6] A.I. Virtanen, Phytochemistry 4 (1965) 207–228.
[7] M.A. Abdel-Sater, Pakistan J. Biol. Sci. 4 (2001) 838–842.
[8] K.G. Mukerji, Disease Management of Fruits and Vegetables Vol: 1 Fruit and
Vegetable Diseases, Springer Verlag, Germany, 2004.
[9] M.D. Ahmad, Cruciferae Newsletter 29 (2010) 29–31.
[10] R.J. Petroski, W.F. Kwolek, Phytochemistry 24 (1985) 213–216.
[11] N. Rakariyatham, B. Butrindr, H. Niamsup, L. Shank, Braz. J. Microbiol. 36 (2005)
242–245.
[12] C. Aguirre-Pranzoni, G.I. Furque, C.E. Ardanaz, A. Pacciaroni, V. Sosa, C.E. Tonn,
M. Kurina-Sanz, Arkivoc vii (2011) 170–181.
Entry
Co-solvent
[0.5%, v/v]
Sulfide
1 (%)
Sulfoxide
1a (%)
(R)-1a ee (%)
Sulfone
1b (%)
1
2
3
4
5
6
DMSO
94
0
6
42
0
0
7
0
7
0
iso-Propanol
Methanol
n-Hexane
100
>99
0
93
95
80
40
64
80
77
25
5
tert-Butyl
alcohol
Toluene
13
60
[13] C. Aguirre-Pranzoni, A.A. Orden, F.R. Bisogno, C.E. Ardanaz, C.E. Tonn, M. Kurina-
Sanz, Fungal Biol. 111 (2011) 245–252.
[14] B.J. Auret, R.D. Boyd, H.B. Henbest, C.R. Watson, Phytochemistry 13 (1974)
65–68.
Determined by chiral GC-FID analysis. Substrate concentration 1 mM. Bio-reaction
time 5 days.
[15] M. Madesclaire, A. Fauveb, J. Metina, A. Carpy, Tetrahedron: Asymmetry 1
(1990) 311–331.
[16] H. Holland, C.G. Rand, P. Viski, F.M. Brown, Can. J. Chem. 69 (1991)
1989–1993.
recorded with isopropyl alcohol, reaching a 100% substrate con-
version and excellent optical purity (ee > 99%).
[17] H. Holland, F.M. Brown, B.G. Larsen, Tetrahedron: Asymmetry
5
(1994)
1129–1130.
4. Conclusion
[18] H. Holland, F.M. Brown, B.G. Larsen, Tetrahedron: Asymmetry
1561–1567.
6
(1995)
[19] H. Holland, F.M. Brown, G. Lakshmaiah, B.G. Larsen, M. Patel, Tetrahedron:
Asymmetry 8 (1997) 683–697.
[20] C. Pinedo-Rivilla, J. Aleu, I.G. Collado, J. Mol. Catal. B: Enzym. 49 (2007)
18–23.
[21] L.C. Ricci, J.V. Comasseto, L.H. Andrade, M. Capelari, Q.B. Cass, A.L.M. Porto,
Enzyme Microb. Tech. 36 (2005) 937–946.
[22] R.M. Dodson, N. Newman, H.M. Tsuchiya, J. Org. Chem. 27 (1962)
2707–2708.
[23] B.J. Auret, D.R. Boyd, H.B. Henbest, Chem. Commun. 3 (1966) 66–67.
[24] B.J. Auret, D.R. Boyd, H.B. Henbest, J. Chem. Soc. C (1968) 2374–2376.
[25] A. Porto, F. Cassiola, S. Dias, I. Joekes, Y. Gushikem, J.A.R. Rodrigues, P.J.S.
Moran, G.P. Manfio, A.J. Marsaioli, J. Mol. Catal. B: Enzym. 19 (2002)
327–334.
[26] L. Piovan, E. Kagohara, L.C. Ricci, A.F. Keppler, M. Capelari, L.H. Andrade, J.V.
Comasseto, A.L.M. Porto, Tetrahedron Asymmetry 19 (2008) 2385–2389.
[27] A. Rioz-Martínez, G. de Gonzalo, D.E. Torres-Pazmin˜o, M.W. Fraaije, V. Gotor,
Eur. J. Org. Chem. (2010) 6409–6416.
The ability of several Aspergillus species of performing enantios-
elective sulfoxidations toward an aryl alkyl and a dialkyl sulfide
was screened. All the strains that showed selectivity favored the
(R)-enantioner. Remarkably, no sulfone was detected in the tested
standard conditions, demonstrating the chemoselectivity of the
process. The results of the optimization studies indicated that A.
japonicus presents a huge potential to be used as whole cell biocat-
alyst for symmetric sulfoxidations. In fact its growing cell cultures
with the addition of isopropyl alcohol as co-solvent resulted a good
alternative for the preparation of (R)-cyclohexyl(methyl)sulfoxide
since the conversion (100%) and the optical purity (ee > 99%) were
excellent.
Further studies aimed at the cloning and characterization of the
involved enzyme/s, as well as their use for sulfoxidation of different
substrates, are in progress in our laboratory.
[28] H. Holland, Nat. Prod. Rep. 18 (2001) 171–181.
[29] L. Lah, N. Krasevec, P. Trontelj, R. Komel, Fungal. Genet. Biol. 45 (2008)
446–458.
[30] A.A. Orden, F.R. Bisogno, D. Cifuente, O.S. Giordano, M. Kurina-Sanz, J. Mol. Catal.
B: Enzym. 42 (2006) 71–77.
[31] A.A. Orden, F.R. Bisogno, O.S. Giordano, M. Kurina-Sanz, J. Mol. Catal. B: Enzym.
51 (2008) 49–55.
Acknowledgments
This work was supported by grants from Universidad Nacional
de San Luis 7301, PIP6228 Consejo Nacional de Investigaciones
Científicas y Técnicas (CONICET) and PICT352 Agencia Nacional de
Promoción Científica y Tecnológica (ANPCyT). M.L.M is a doctoral
CONICET fellow. F.R.B is a postdoctoral CONICET fellow. A.A.O and
M.K.S are members of the Research Career of CONICET. We espe-
cially acknowledge Dr. Ivan Lavandera for his helpful contributions.
[32] A.A. Orden, C. Magallanes-Noguera, E. Agostini, M. Kurina-Sanz, J. Mol. Catal. B:
Enzym. 61 (2009) 216–220.
[33] M. Kurina-Sanz, F.R. Bisogno, I. Lavandera, A.A. Orden, V. Gotor-Santamaría,
Adv. Synth. Catal. 351 (2009) 1842–1848.
[34] H. Holland, F.M. Brown, B. Larsen, Bioorg. Med. Chem. 2 (1994) 647–652.
[35] H. Holland, Chem. Rev. 88 (1988) 473–485.
[36] M.A. Capozzi, C. Cardellicchio, F. Naso, P. Tortorella, J. Org. Chem. 65 (2000)
2843–2846.
[37] S. Colonna, N. Gaggero, A. Manfredi, L. Casella, M. Gullotti, G. Carrea, P. Pasta,
Biochemistry 29 (1990) 10465–10468.
[38] A.T. Li, H.L. Yu, J. Pan, J.D. Zhang, J.H. Xu, G.Q. Lin, Bioresource Technol. 102
(2011) 1537–1542.
Appendix A. Supplementary data
[39] A.T. Li, J.D. Zhang, H.L. Yu, J. Pan, J.H. Xu, Process Biochem. 46 (2011)
689–694.
Supplementary data associated with this article can be