Page 7 of 9
Chemistry of Materials
rechargeable zinc batteries. Energy Environ. Sci. 2019, 12 (6), 1999-
morphology of NDI particles and elemental mapping,
respectively.
2009.
16.
1
Yan, M.; He, P.; Chen, Y.; Wang, S.; Wei, Q.; Zhao, K.; Xu,
2
3
4
5
6
7
8
9
X.; An, Q.; Shuang, Y.; Shao, Y.; Mueller, K. T.; Mai, L.; Liu, J.; Yang, J.,
Water-Lubricated Intercalation in V2O5·nH2O for High-Capacity and
High-Rate Aqueous Rechargeable Zinc Batteries. Adv. Mater. 2018, 30
(1), 1703725.
ASSOCIATED CONTENT
Supporting Information: Supporting data analyzed by CV,
galvanostatic examinations, XPS, XRD, and SEM (PDF)
17.
Guin, P. S.; Das, S.; Mandal, P. C., Electrochemical Reduction
of Quinones in Different Media: A Review. Int. J. Electrochem. Sci.
2011, 2011, 816202.
AUTHOR INFORMATION
18.
Shi, H.-Y.; Ye, Y.-J.; Liu, K.; Song, Y.; Sun, X., A Long-Cycle-
Life Self-Doped Polyaniline Cathode for Rechargeable Aqueous Zinc
Batteries. Angew. Chem. Int. Ed. 2018, 57 (50), 16359-16363.
Corresponding Author
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
19.
Tie, Z.; Liu, L.; Deng, S.; Zhao, D.; Niu, Z., Proton Insertion
* hrbyon@kaist.ac.kr
Chemistry of a Zinc–Organic Battery. Angew. Chem. Int. Ed. 2020, 59
(12), 4920-4924.
ACKNOWLEDGMENT
This work is supported by the Samsung Research Funding &
Incubation Center of Samsung Electronics under Project
Number SRFC-MA1702-05.
20.
Huang, J.; Wang, Z.; Hou, M.; Dong, X.; Liu, Y.; Wang, Y.;
Xia, Y., Polyaniline-intercalated manganese dioxide nanolayers as a
high-performance cathode material for an aqueous zinc-ion battery.
Nat. Commun. 2018, 9 (1), 2906.
21.
Katz, H. E.; Lovinger, A. J.; Johnson, J.; Kloc, C.; Siegrist, T.;
Li, W.; Lin, Y. Y.; Dodabalapur, A., A soluble and air-stable organic
semiconductor with high electron mobility. Nature 2000, 404 (6777),
478-481.
22.
Seydou, M.; Teyssandier, J.; Battaglini, N.; Kenfack, G. T.;
REFERENCES
Lang, P.; Tielens, F.; Maurel, F.; Diawara, B., Characterization of
NTCDI supra-molecular networks on Au(111); combining STM, IR and
DFT calculations. RSC Adv. 2014, 4 (49), 25698-25708.
1.
Liu, J.; Xu, C.; Chen, Z.; Ni, S.; Shen, Z. X., Progress in
aqueous rechargeable batteries. Green Energy Environ. 2018, 3 (1),
20-41.
23.
Harris, D. C., Quantitative Chemical Analysis. W. H. Freeman:
2.
Wang, J.; Yamada, Y.; Sodeyama, K.; Watanabe, E.; Takada,
2015.
24.
K.; Tateyama, Y.; Yamada, A., Fire-extinguishing organic electrolytes
for safe batteries. Nat. Energy 2018, 3 (1), 22-29.
Peover, M. E.; Davies, J. D., The influence of ion-association
on the polarography of quinones in dimethylformamide. J. Electroanal.
Chem. 1963, 6 (1), 46-53.
3.
Demir-Cakan, R.; Palacin, M. R.; Croguennec, L.,
Rechargeable aqueous electrolyte batteries: from univalent to
multivalent cation chemistry. J. Mater. Chem. A 2019, 7 (36), 20519-
20539.
25.
DeBlase, C. R.; Hernández-Burgos, K.; Rotter, J. M.;
Fortman, D. J.; dos S. Abreu, D.; Timm, R. A.; Diógenes, I. C. N.;
Kubota, L. T.; Abruña, H. D.; Dichtel, W. R., Cation-Dependent
Stabilization of Electrogenerated Naphthalene Diimide Dianions in
Porous Polymer Thin Films and Their Application to Electrical Energy
Storage. Angew. Chem. Int. Ed. 2015, 54 (45), 13225-13229.
4.
Parker, J. F.; Chervin, C. N.; Pala, I. R.; Machler, M.; Burz,
M. F.; Long, J. W.; Rolison, D. R., Rechargeable nickel–3D zinc
batteries: An energy-dense, safer alternative to lithium-ion. Science
2017, 356 (6336), 415-418.
26.
Yao, X.; Ke, Y.; Ren, W.; Wang, X.; Xiong, F.; Yang, W.; Qin,
5.
Shin, J.; Lee, J.; Park, Y.; Choi, J. W., Aqueous zinc ion
M.; Li, Q.; Mai, L., Defect-Rich Soft Carbon Porous Nanosheets for Fast
and High-Capacity Sodium-Ion Storage. Adv. Energy Mater. 2019, 9
(6), 1803260.
batteries: focus on zinc metal anodes. Chem. Sci. 2020, 11 (8), 2028-
2044.
6.
Xu, C.; Li, B.; Du, H.; Kang, F., Energetic Zinc Ion Chemistry:
27.
Ding, Y.; Zhang, F.; Xu, J.; Miao, Y.; Yang, Y.; Liu, X.; Xu, B.,
The Rechargeable Zinc Ion Battery. Angew. Chem. Int. Ed. 2012, 51 (4),
933-935.
Synthesis of short-chain passivated carbon quantum dots as the light
emitting layer towards electroluminescence. RSC Adv. 2017, 7 (46),
28754-28762.
7.
Sun, W.; Wang, F.; Hou, S.; Yang, C.; Fan, X.; Ma, Z.; Gao,
T.; Han, F.; Hu, R.; Zhu, M.; Wang, C., Zn/MnO2 Battery Chemistry
With H+ and Zn2+ Coinsertion. J. Am. Chem. Soc. 2017, 139 (29),
9775-9778.
28.
Ferraria, A. M.; Lopes da Silva, J. D.; Botelho do Rego, A. M.,
XPS studies of directly fluorinated HDPE: problems and solutions.
Polymer 2003, 44 (23), 7241-7249.
8.
Pan, H.; Shao, Y.; Yan, P.; Cheng, Y.; Han, K. S.; Nie, Z.;
29.
Oh, Y. J.; Yoo, J. J.; Kim, Y. I.; Yoon, J. K.; Yoon, H. N.; Kim, J.-
Wang, C.; Yang, J.; Li, X.; Bhattacharya, P.; Mueller, K. T.; Liu, J.,
Reversible aqueous zinc/manganese oxide energy storage from
conversion reactions. Nat. Energy 2016, 1 (5), 16039.
H.; Park, S. B., Oxygen functional groups and electrochemical
capacitive behavior of incompletely reduced graphene oxides as a
thin-film electrode of supercapacitor. Electrochim. Acta 2014, 116,
118-128.
9.
Wu, X.; Hong, J. J.; Shin, W.; Ma, L.; Liu, T.; Bi, X.; Yuan, Y.;
Qi, Y.; Surta, T. W.; Huang, W.; Neuefeind, J.; Wu, T.; Greaney, P. A.;
Lu, J.; Ji, X., Diffusion-free Grotthuss topochemistry for high-rate and
long-life proton batteries. Nat. Energy 2019, 4 (2), 123-130.
30.
Pan, D.; Wang, L.; Li, Z.; Geng, B.; Zhang, C.; Zhan, J.; Yin,
L.; Wang, L., Synthesis of graphene quantum dot/metal–organic
framework nanocomposites as yellow phosphors for white light-
emitting diodes. New J. Chem. 2018, 42 (7), 5083-5089.
10.
Aqueous Zinc-Ion Batteries. ACS Energy Lett. 2018, 3 (10), 2480-2501.
11. Shea, J. J.; Luo, C., Organic Electrode Materials for Metal Ion
Batteries. ACS Appl. Mater. Interfaces 2020, 12 (5), 5361-5380.
12. Zhao, Q.; Huang, W.; Luo, Z.; Liu, L.; Lu, Y.; Li, Y.; Li, L.;
Fang, G.; Zhou, J.; Pan, A.; Liang, S., Recent Advances in
31.
Al-Gaashani, R.; Radiman, S.; Daud, A. R.; Tabet, N.; Al-
Douri, Y., XPS and optical studies of different morphologies of ZnO
nanostructures prepared by microwave methods. Ceram. Int. 2013, 39
(3), 2283-2292.
Hu, J.; Ma, H.; Chen, J., High-capacity aqueous zinc batteries using
sustainable quinone electrodes. Sci. Adv. 2018, 4 (3), eaao1761.
32.
Stanimirova, T.; Kerestedjian, T.; Kirov, G., Dehydration and
rehydration of Zn-hydroxy sulfate minerals with interrupted
decorated hydroxide sheets. Appl. Clay Sci. 2017, 135, 16-26.
13.
Guo, Z.; Ma, Y.; Dong, X.; Huang, J.; Wang, Y.; Xia, Y., An
Environmentally Friendly and Flexible Aqueous Zinc Battery Using an
Organic Cathode. Angew. Chem. Int. Ed. 2018, 57 (36), 11737-11741.
33.
Zabolotskii, V. I.; Shel'deshov, N. V.; Gnusin, N. P.,
Dissociation of Water Molecules in Systems with Ion-exchange
Membranes. Russ. Chem. Rev. 1988, 57 (8), 801-808.
14.
Nam, K. W.; Kim, H.; Beldjoudi, Y.; Kwon, T.-w.; Kim, D. J.;
Stoddart, J. F., Redox-Active Phenanthrenequinone Triangles in
Aqueous Rechargeable Zinc Batteries. J. Am. Chem. Soc. 2020, 142 (5),
2541-2548.
34.
Simons, R., Water splitting in ion exchange membranes.
Electrochim. Acta 1985, 30 (3), 275-282.
35.
Tanaka, Y., Water dissociation in ion-exchange membrane
15.
Nam, K. W.; Kim, H.; Choi, J. H.; Choi, J. W., Crystal water for
electrodialysis. J. Membr. Sci. 2002, 203 (1), 227-244.
high performance layered manganese oxide cathodes in aqueous
ACS Paragon Plus Environment