ChemComm
Communication
(Fig. S6 of ESI†), in full agreement with assumption (ii). Feeding
of 18O2 also resulted in the incorporation into one oxygen of the
shunt product 24 (Fig. S7 of ESI†), in agreement with the
pathways shown in Schemes 1 and 4.
We have investigated the biosynthesis of 1 and 2 by a com-
bined strategy of gene knockouts, bioinformatic analyzes, and
feeding experiments with labeled precursors. The delineated
pathway is in full agreement with all results from labeling,
mutation and complementation experiments, corroborated by the
presence of the shunt products tropone and tropone hydrate in
P. inhibens headspace extracts, and plausible in light of the
knowledge about characterized homologous enzymes. Particularly
interesting is the mechanism of sulfur introduction that is distinct
from recently unraveled mechanisms in holomycin, the related
thiomarinol A, and gliotoxin biosynthesis.19–21 Further studies on
the enzymes of TDA biosynthesis are now possible.
Scheme 4 Formation of the tropone ring and shunt products.
21 to the vinylogous Michael acceptor in 32 and oxidation can
introduce the second sulfur to yield 33 that may undergo
spontaneous oxidation to 34 in air. Finally, the thioesterase
TdaD catalyzes thioester hydrolysis to yield 1.
We also investigated the biosynthetic origin of the additional
oxygen in 2, assuming two alternatives: (i) formation of 1 from
tyrosine via p-hydroxy-PAA, and (ii) oxidation of 1 or a late stage
intermediate. Feeding experiments with [phenol-17O]tyrosine and
18O2 proceeded only with incorporation of labeling from 18O2
This work was funded by the DFG (SFB TR51 ‘‘Roseobacter’’)
and the Fonds der Chemischen Industrie with a Chemiefonds
Scholarship (to NLB).
Notes and references
1 J. M. Gozalez, R. Simo, R. Massana, J. S. Covert, E. O. Casamayor,
C. Pedros-Allo and M. A. Moran, Appl. Environ. Microbiol., 2000,
66, 4237.
2 A. R. J. Curson, J. D. Todd, M. J. Sullivan and A. W. B. Johnston,
Nat. Rev. Microbiol., 2012, 9, 849.
¨
3 (a) L. Liang, PhD thesis, University of Gottingen, 2003; (b) S. Thole,
D. Kalhoefer, S. Voget, M. Berger, T. Engelhardt, H. Liesegang,
A. Wollherr, S. Kjelleberg, R. Daniel, M. Simon, T. Thomas and
T. Brinkhoff, ISME J., 2012, 6, 2229.
4 M. R. Seyedsayamdost, R. J. Case, R. Kolter and J. Clardy, Nat. Chem.,
2011, 3, 331.
5 M. Kenig and C. Reading, J. Antibiot., 1979, 32, 549.
6 D. M. Gardiner, P. Waring and B. J. Howlett, Microbiology, 2005,
151, 1021.
7 M. Berger, N. L. Brock, H. Liesegang, M. Dogs, I. Preuth, M. Simon,
J. S. Dickschat and T. Brinkhoff, Appl. Environ. Microbiol., 2012,
78, 3539.
8 R. Teufel, C. Gantert, M. Voss, W. Eisenreich, W. Haehnel and
G. Fuchs, J. Biol. Chem., 2011, 286, 11021.
9 D. E. Cane, Z. Wu and J. E. van Epp, J. Am. Chem. Soc., 1992, 114,
8479.
10 H. Geng, J. B. Bruhn, K. F. Nielsen, L. Gram and L. Belas, Appl.
Environ. Microbiol., 2008, 74, 1535.
11 H. Geng and R. Belas, J. Bacteriol., 2011, 193, 4002.
12 J. Perozich, H. Nicholas, B. Wang, R. Lindahl and J. Hempel, Protein
Sci., 1999, 8, 137.
¨
13 N. L. Brock, C. A. Citron, C. Zell, M. Berger, I. Wagner-Dobler,
J. Petersen, T. Brinkhoff, M. Simon and J. S. Dickschat, Beilstein
J. Org. Chem., 2013, 9, 942.
14 M. Kirihara, Y. Asai, S. Ogawa, T. Noguchi, A. Hatano and Y. Hirai,
Synthesis, 2007, 3286.
15 C. G. Friedrich, D. Rother, F. Bardischewsky, A. Quentmeier and
J. Fischer, Appl. Environ. Microbiol., 2001, 67, 2873.
16 C. R. Gentry-Weeks, J. Spokes and T. Thompon, J. Biol. Chem., 1995,
270, 7695.
17 V. Thiel, T. Brinkhoff, J. S. Dickschat, S. Wickel, J. Grunenberg,
¨
I. Wagner-Dobler, M. Simon and S. Schulz, Org. Biomol. Chem., 2010,
8, 234.
18 E. Strauss and T. P. Begley, J. Am. Chem. Soc., 2001, 123, 6449.
19 B. Li and C. Walsh, Biochemistry, 2011, 50, 4615.
20 A. C. Murphy, S.-S. Gao, L.-C. Han, S. Carobene, D. Fukuda, Z. Song,
J. Hothersall, R. J. Cox, J. Crosby, M. P. Crump, C. M. Thomas,
C. L. Willis and T. J. Simpson, Chem. Sci., 2014, 5, 397.
21 D. H. Scharf, P. Chankhamjon, K. Scherlach, T. Heinekamp, M. Roth,
A. K. Brakhage and C. Hertweck, Angew. Chem., Int. Ed., 2012,
51, 10064.
Scheme 5 (A) Mechanism of phosphopantothenoylcysteine decarboxyl-
ases; (B) introduction of sulfur into 1.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun., 2014, 50, 5487--5489 | 5489