RSC Advances p. 11278 - 11288 (2016)
Update date:2022-08-29
Topics:
Agnelli, Silvia
Arriarán, Sofía
Oliva, Laia
Remesar, Xavier
Fernández-López, José-Antonio
Alemany, Marià
High-energy (hyperlipidic) cafeteria diets induce insulin resistance limiting glucose oxidation, and lower amino acid catabolism. Despite high amino-N intake, amino acids are preserved, lowering urea excretion. We analysed how energy partition induced by cafeteria diet affects liver ammonium handling and urea cycle. Female and male rats were fed control or cafeteria diets for 30 days. There was a remarkable constancy on enzyme activities and expressions of urea cycle and ammonium metabolism. The key enzymes controlling urea cycle: carbamoyl-P synthase 1, arginino-succinate synthase and arginase expressions were decreased by diet (albeit more markedly in males), and their activities were correlated with the gene expressions. The effects observed, in ammonium handling enzyme activities and expressions behaved in a way similar to that of the urea cycle, showing a generalized downregulation of liver amino acid catabolism. This process was affected by sex. The different strategies of amino-N handling by females and males further modulated the preservation of 2-amino N under sufficient available energy. The effects of sex were more marked than those of diet were, since different metabolism survival strategies changed substrate partition and fate. The data presented suggest a lower than expected N flow to the liver, which overall importance for amino acid metabolism tends to decrease with both cafeteria diet and female sex. Under standard conditions, liver availability of ammonium was low and controlled. The situation was unchanged (or even lowered) in cafeteria-fed rats, ultimately depending on intestinal amino acid catabolism.
View MoreContact:
Address:No.89,Xinhua Road, Langfang City,Hebei China
Wuhan Better Organic Technology Inc.
Contact:13307163183
Address:Wuhan Economic&Technology Development Zone, Hubei
NIGNXIA XINDACHANG TECHNOLOGY CO.,LTD
website:https://xdcchemical.com/
Contact:86-311-85758226
Address:North Industry Area, Wuji
Hangzhou Sartort Biopharma Co., Ltd
website:http://www.sartort.com
Contact:86-571-87039693
Address:No. 57, Tech Park Road, Hangzhou, Zhejiang, China
Shandong Jiulong Hisince Pharmaceutical Co.,Ltd.
Contact:+86-15853188990
Address:Huadian Pioneer Park, Huadian Township, Qihe County, Dezhou City, Shandong, P.R.China
Doi:10.1039/tf9585401323
(1958)Doi:10.1039/c2cy20493b
(2013)Doi:10.1016/j.tetlet.2008.04.001
(2008)Doi:10.1081/SCC-100106199
(2001)Doi:10.1021/ja01165a553
(1950)Doi:10.1016/j.tet.2005.05.097
(2005)