This work was supported by Russian Fund of Basic
Research, grant number 09-03-00308. We also thank Drs
V. P. Gubskaya, D. V. Zakharychev, and A. E. Vandyukov
for valuable technical assistance.
Notes and references
z Crystal data for rac-7: C10H14O3, M = 182.21, Monoclinic (Pc),
a = 17.264(2) A, b = 4.7225(7) A, c = 11.9008(17) A, b = 90.091(2)1,
V = 970.3(2) A3, Z = 4, m(Mo-Ka) = 0.091 mmꢁ1, 12 167 reflections
measured, 2236 unique (Rint = 0.0389). Final R = 0.0768 for 1597
reflections with I > 2s(I) and wR = 0.2257 (all data), GOF (F2) =
1.017. Crystal data for (S)-7: C10H14O3, M = 182.21, Orthorhombic
(P212121), a = 4.8768(2) A, b = 7.2147(3) A, c = 28.5203(11) A, V =
1003.48(7) A3, Z = 4, m(Cu-Ka) = 0.726 mmꢁ1. 7867 reflections
measured, 1673 unique (Rint = 0.0295). Final R = 0.0288 for 1630
reflections with I > 2s(I) and wR = 0.0771 (all data), GOF (F2) = 1.047.
CCDC reference numbers 755204 for rac-7 and 755205 for (S)-7.
1 Molecular Gels: Materials with Self-assembled Fibrillar Networks, ed.
R. G. Weiss and P. Terech, Springer, Dordrecht, The Netherlands,
2006.
2 (a) Sol–Gel Chemistry and Materials issue, Acc. Chem. Res., 2007,
40, N.9; (b) Low Molecular Weight Organic Gelators issue,
Tetrahedron, 2007, 63, N.31.
Fig. 4 Bilayer 2D H-bonded supramolecular pattern in the rac-7
crystals. Symmetry independent A and B molecules are denoted by
different styles.
3 (a) D. K. Smith, Molecular Gels—Nanostructured Soft Materials,
in Organic nanostructures, ed. J. L. Atwood and J. W. Steed, 2008,
WILEY-VCH, Weinheim, ch. 5, pp. 111–154; (b) F. Zhao,
M. Lung Ma and B. Xu, Chem. Soc. Rev., 2009, 38, 883;
(c) P. Dastidar, Chem. Soc. Rev., 2008, 37, 2699; (d) A. R. Hirst,
B. Escuder, J. F. Miravet and D. K. Smith, Angew. Chem., Int. Ed.,
2008, 47, 8002; (e) M. Llusar and C. Sanchez, Chem. Mater., 2008,
20, 782.
4 M. George and R. G. Weiss, Acc. Chem. Res., 2006, 39, 489.
5 D. J. Abdallah and R. G. Weiss, Langmuir, 2000, 16, 352.
6 D. J. Abdallah, S. A. Sirchio and R. G. Weiss, Langmuir, 2000, 16,
7558.
7 M. George, G. Tan, V. T. John and R. G. Weiss, Chem.–Eur. J.,
2005, 11, 3243.
Fig. 5 Microphotographs of the crystals obtained during slow
crystallization of dilute scal-7 (a) and rac-7 (b) solutions; scale interval
10 mm.
8 For reviews, see: (a) S. Malik, N. Fujita and S. Shinkai, Gels as a
Media for Functional Chiral Nanofibers, in: Chirality at the Nanoscale:
Nanoparticles, Surfaces, Materials and more, ed. D. B. Amabilino,
WILEY-VCH, Weinheim, 2009, ch. 4, pp. 93–114; (b) M. Suzuki and
K. Hanabusa, Chem. Soc. Rev., 2009, 38, 967; (c) D. K. Smith, Chem.
Soc. Rev., 2009, 38, 684; (d) A. Brizard, R. Oda and I. Huc, Top. Curr.
Chem., 2005, 256, 167.
constitution and the entangled character of their agglomerates
obtained during slow crystallization of dilute scal-7 solutions
(Fig. 5a). In turn, the propensity to form strongly connected
2D structures poorly bounded to each other could cause
precipitation of the isolated thin crystal plates during crystal-
lization of rac-7 (Fig. 5b).
9 For resent examples, see (a) L. Frkanec and M. Zinic, Chem.
´
Commun., 2010, 46, 522; (b) A. Dawn, N. Fujita, S. Haraguchi,
K. Sada and S. Shinkai, Chem. Commun., 2009, 2100;
(c) Y.-S. Zheng, S.-Y. Ran, Y.-J. Hu and X.-X. Liu, Chem.
Commun., 2009, 1121; (d) F. Rodrıguez-Llansola, J. F. Miravet
´
In summary, p-tolyl glycerol ether was shown to be an
effective molecular organic gelator. It forms stable transparent
gels in hydrocarbon media showing very good quantitative
characteristics of the gelling abilities, which are in turn
strongly dependent on the chiral properties of the gelator.
p-Tolyl glycerol ether can serve as a convenient model
compound for studying the properties of the chiral gelators
as it has a simple chemical structure and is readily available in
both enantiomeric and racemic forms.
and B. Escuder, Chem. Commun., 2009, 209.
10 P. Terech, V. Rodrigez, J. D. Barnes and G. B. McKenna,
Langmuir, 1994, 10, 3406.
11 P. Terech and R. G. Weiss, Chem. Rev., 1997, 97, 3133.
12 E. A. Wilder, C. K. Hall, S. A. Khan and R. J. Spontak, Recent
Res. Dev. Mater. Sci., 2002, 3(Pt. 1), 93.
´ ´ ´
13 M. Jokic, J. Makarevic and M. Zinic, J. Chem. Soc., Chem.
Commun., 1995, 1723.
14 C. Boettcher, B. Schade and J.-H. Fuhrtop, Langmuir, 2001, 17, 873.
15 V. P. Vassilev, E. E Simanek, M. R. Wood and C.-H. Wong,
Chem. Commun., 1998, 1865.
ꢀc
This journal is The Royal Society of Chemistry 2010
Chem. Commun., 2010, 46, 3523–3525 | 3525