Communication
Tetrahedron 2007, 63, 8124–8134; i) M. Satyanayana Reddy, S. Thirumalai
Rajan, M. Sahadeva Reddy, PCT Int. Appl. WO2007125547, 2007; j) T.
Hosoya, T. Hiramatsu, T. Ikemoto, M. Nakanishi, H. Aoyama, A. Hosoya, T.
Iwata, K. Maruyama, M. Endo, M. Suzuki, Org. Biomol. Chem. 2004, 2,
637–641.
Summarizing the synthetic sequence, extremely feasible re-
actions afforded ketal 23 from glycol-protected ethyl aceto-
acetate 18, including ester hydrolysis, reaction with Meldrum's
acid, and cleavage of intermediate 21 with methanol. The criti-
cal reduction to obtain enantiopure 24 was successfully per-
formed by using enzyme catalysts. Protection with TBDMS and
removal of the ethylene glycol acetal provided enantiopure
ketone 13 in six practical synthetic steps in 64 % overall yield.
[3] a) S. E. Park, E. H. Nam, H. B. Jang, J. S. Oh, S. Some, Y. S. Lee, C. E. Song,
Adv. Synth. Catal. 2010, 352, 2211–2217; b) V. K. Kansal, B. P, Chaurasia,
H. K. Patel, V. Gothalia, H. Gandhi, PCT Int. Appl. WO2008130638, 2008;
c) T. Konoike, Y. Araki, J. Org. Chem. 1994, 59, 7849–7854; d) D. S. Kara-
newsky, M. F. Malley, J. Z. Gougoutas, J. Org. Chem. 1991, 56, 3744–3747;
e) P. D. Theisen, C. H. Heathcock, J. Org. Chem. 1988, 53, 2374–2378.
[4] R. Metzner, W. Hummel, F. Wetterich, B. König, H. Gröger, Org. Process
Res. Dev. 2015, 19, 635.
[5] a) A. Bariotaki, D. Kalaitzakis, I. Smonou, Org. Lett. 2012, 14, 1792–1795;
b) W. Li, W. Fan, X. Ma, X. Tao, X. Li, X. Xie, Z. Zhang, Chem. Commun.
2012, 48, 8976–8978; c) W. Fan, W. Li, X. Ma, X. Tao, X. Li, Y. Yao, X.
Xiea, Z. Zhang, Chem. Commun. 2012, 48, 4247–4249; d) V. Andrushko,
N. Andrushko, G. König, A. Börner, Tetrahedron Lett. 2008, 49, 4836–4839;
e) Z. Guo, Y. Chen, A. Goswami, R. L. Hanson, R. N. Patel, Tetrahedron:
Asymmetry 2006, 17, 1589–1602; f) V. Blandin, J. F. Carpentier, A. Mor-
treux, Eur. J. Org. Chem. 1999, 3421–3427.
[6] a) G. P. Chen, P. K. Kapa, E. M. Loeser, U. Beutler, W. Zaugg, M. J. Girgis,
PCT Int. Appl. WO03064382, 2003; b) M. Suzuki, H. Iwasaki, Y. Fujikawa,
M. Kitahara, M. Sakashita, R. Sakoda, Bioorg. Med. Chem. 2001, 9, 2727–
2743; c) M. Suzuki, Y. Yanagawa, H. Iwasaki, H. Kanda, K. Yanagihara, H.
Matsumoto, Y. Ohara, Y. Yazaki, R. Sakoda, Bioorg. Med. Chem. Lett. 1999,
9, 2977–2982; d) J. E. Lynch, R. P. Volante, R. V. Wattley, I. Shinkai, Tetrahe-
dron Lett. 1987, 28, 1385–1388.
[7] a) M. Zlicar, PCT Int. Appl. WO200717117, 2007; b) A. Wolleb, H. Wolleb,
U. S. Patent US2003166946, 2003; c) O. Tempkin, S. Abel, C. P. Chen, R.
Underwood, K. Prasad, K. M. Chen, O. Repic, T. J. Blacklock, Tetrahedron
1997, 53, 10659–10670; d) C. Chan, E. J. Bailey, C. D. Hartley, D. F. Hay-
man, J. L. Hutson, G. G. A. Inglis, P. S. Jones, S. E. Keeling, B. E. Kirk, R. B.
Lamont, M. G. Lester, J. M. Pritchard, B. C. Ross, J. J. Scicinski, S. J. Spooner,
G. Smith, I. P. Steeples, N. S. Watson, J. Med. Chem. 1993, 36, 3646–3657;
e) D. V. Patel, R. J. Schmidt, E. M. Gordon, J. Org. Chem. 1992, 57, 7143–
7151.
Conclusions
The synthesis of ketone 13, an important intermediate used
to prepare statins, was approached through a chemoenzymatic
synthetic sequence as a possible alternative to the use of
hydroxyglutaric acid for the synthesis of the side chain of
statins. Selective reduction of ketal 23 was a crucial step for the
preparation of desired product 13. Careful study of the chemi-
cal reduction by catalytic hydrogenation or chiral borane rea-
gents demonstrated a limitation of such chemical methods, as
the observed ee was limited to 80 %, which is not suitable for
the preparation of statins. Enzymatic reduction was finally dem-
onstrated to be a powerful tool to prepare the desired interme-
diate with good efficacy in terms of yield, enantioselectivity,
and ease of isolation.
Supporting Information (see footnote on the first page of this
article): Experimental procedures and spectroscopic data for all re-
ported compounds.
Acknowledgments
[8] a) S. Tartaggia, C. Ferrari, M. Pontini, O. De Lucchi, Eur. J. Org. Chem.
2015, 4102–4107; b) O. De Lucchi, S. Tartaggia, C. Ferrari, M. Galvagni,
M. Pontini, S. Fogal, R. Motterle, R. M. Moreno, A. Comely, PCT Int. Appl.
WO2014128022, 2014.
The authors gratefully acknowledge the Fabbrica Italiana Sintet-
ici S.p.A. (F.I.S.) for financial support.
[9] Acetalization experiments were performed by using ethylene glycol or
1,2-bis(trimethylsiloxy)ethane in toluene or cyclohexane in the presence
of several Brønsted and Lewis acid catalysts. However, transesterification
of the methyl ester group was the most favored process under the ace-
talization conditions.
[10] K. M. Cheung, S. J. Coles, M. B. Hursthouse, N. I. Johnson, P. M. Jordan,
Angew. Chem. Int. Ed. 2002, 41, 1198–1202; Angew. Chem. 2002, 114,
1246–1250.
[11] M. Müller, Angew. Chem. Int. Ed. 2005, 44, 362–365; Angew. Chem. 2005,
117, 366–369.
[12] S. K. Ma, J. Gruber, C. Davis, L. Newman, D. Gray, A. Wang, J. Grate, G. W.
Huisman, R. A. Sheldon, Green Chem. 2010, 12, 81–86.
Keywords: Asymmetric synthesis · Ketones · Reduction ·
Enzymes · Inhibitors · Statins
[1] a) J. A. Tobert, Nat. Rev. Drug Discovery 2003, 2, 517–526; b) J. A. Farmer,
Prog. Cardiovasc. Dis. 1998, 41, 71–94; c) A. Endo, J. Lipid Res. 1992, 33,
1569–1582.
[2] a) J. Fabris, Z. Časar, I. G. Smilović, M. Črnugelj, Synthesis 2014, 46, 2333–
2346; b) Z. Časar, Curr. Org. Chem. 2010, 14, 816–845; c) N. Andrushko,
V. Andrushko, V. Tararov, A. Korostylev, G. König, A. Börner, Chirality 2010,
22, 534–541; d) S. P. Anegondi, S. Rajmahendra, J. Joseph, P. V. Srinivas,
PCT Int. Appl. WO2010023678, 2010; e) A. Korostylev, V. Andrushko, N.
Andrushko, V. I. Tararov, G. König, A. Börner, Eur. J. Org. Chem. 2008, 840–
846; f) J. A. Pfefferkorn, C. Choi, Y. Song, B. K. Trivedi, S. D. Larsen, V.
Askew, L. Dillon, J. C. Hanselman, Z. Lin, G. Lu, A. Robertson, C. Sekerke,
B. Auerbach, A. Pavlovsky, M. S. Harris, G. Bainbridge, N. Caspers, Bioorg.
Med. Chem. Lett. 2007, 17, 4531–4537; g) M. Acemoglu, A. Brodbeck, A.
Garcia, D. Grimier, M. Hassel, B. Riss, R. Schreiber, Helv. Chim. Acta 2007,
90, 1069–1081; h) S. D. Larsen, Y. Song, K. L. Sun, S. R. Miller, B. K. Trivedi,
[13] a) J. Liang, E. Mundorff, R. Voldari, S. Jenne, L. Gilson, A. Conway, A.
Krebber, J. Wong, G. Huisman, S. Truesdell, J. Lalonde, Org. Process Res.
Dev. 2010, 14, 188–192; b) L. Wei, T. Makowski, C. Martinez, A. Ghosh,
Tetrahedron: Asymmetry 2008, 19, 2648–2651.
Received: March 7, 2016
Published Online: ■
Eur. J. Org. Chem. 0000, 0–0
4
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim