4
Tetrahedron
When the compound 12 was separately subjected to Lewis
substituted benzoic or cinnamic acids. Moreover, we have
detailed a mechanistic proposal supported by isolation of key
resorcinol intermediate.
acid mediated cyclization, the cyclized product was not observed.
Interestingly, when the para-position to the cyclizing OH group
(shown in blue color) is unsubstituted (R = H, 20) efficient
cyclization occurred to give unexpected 15a in 87% yield. This
was possible through a sequence of transformations involving
keto-enol tautomerization, [3,3]-sigmatropic shift and cyclization
with other OH (shown in red color), leading to 15a as outlined in
Scheme 4. Having isolated 13, it was separately subjected to
cyclization using different Lewis acids (Table 3). Among them
Bi(OTf)3, In(OTf)3, and Cu(OTf)2 afforded excellent yields
(Table 3, entries 3, 4, 5). Similarly, 17 was subjected to Cu(OTf)2
and BF3-OEt2 mediated bis-cyclization to obtain 21 (Scheme 5).
Acknowledgments
Supplementary material
The detailed experimental procedures and spectroscopic data are
available in supporting information at.
References and notes
Table 3. Lewis acids catalyzed cyclization reaction of 13a.
1. Matsumoto, K.; Miyake, S.; Yano, M.; Ueki, Y.; Tominaga, Y.
Lancet 1997, 350, 1748-1749.
2. a) Fuller, R. W.; Westergaard, C. K.; Collins, J. W.; Cardellina, J. H.,
II; Boyd, M. R. J. Nat. Prod. 1999, 62, 67-69; b) Zhou, T.; Shi, Q.;
Chen, C.; Huang, L.; Ho, P.; Susan, L.; Natschke, M.; Lee, K. L. E.
J. Med. Chem. 2012, 47, 86-96.
3. Zelova, H.; Hanakova, Z.; Cermakova, Z.; Smejkal, k.; Acqua, S. D.;
Babula, P.; Cvacka, J.; Hosek, J. J. Nat. Prod. 2014, 77, 1297-1303.
4. Peralta, M. A.; Ortega, M. G.; Agnese, A. M.; Luis Cabrera, J. E. J.
Nat. Prod. 2011, 74, 158-162.
5. Nukata, M.; Hashimoto, T.; Yamamoto, I.; Iwasaki, N.; Tanaka, M.;
Asakawa,Y. Phytochemistry 2002, 59, 731–737.
6. Quang, D. N.; Hashimoto, T.; Arakawa, Y.; Kohchi, C.; Nishizawa,
T.; Somab, G.; Asakawaa, Y. Bioorg. Med. Chem. 2006, 14, 164-
168.
Entry
Catalystb
Time (h)
Yield (%)
Zn(OTf)2
1
4
53
La(OTf)3
Bi(OTf)3
2
3
4
2
60
87
7. Trost, B. M.; Shen, H. C.; Dong, L.; Surivet, J. P.; Sylvain, C. J. Am.
Chem. Soc. 2004, 126, 11966-11983.
8. a) Seeram, N. P.; Jacobs, H.; McLean, S.; Reynolds, W. F.
Phytochemistry 1998, 49, 1389–1391. b) Tanaka, T.;
Asai, F.; Iinuma, M. Phytochemistry 1998, 49, 229–232.
In(OTf)3
Cu(OTf)2
4
5
2
4
86
92
9. Toume, K.; Habu, T.; Arai, M.A.; Koyano, T.; Kowithayakorn, T.;
Ishibashi M. J. Nat. Prod. 2015, 78, 103 −110.
10. Stark, T. D.; Salger, M.; Frank, O.; Balemba, O. B.; Wakamatsu, J.;
Hofmann, T. J. Nat. Prod. 2015, 78, 234 −240.
aReaction condition: Compound 13 (1 mmol), Catalystb (0.05 mmol).
Scheme 5. BF3-OEt2 mediated cyclization of 17
11. a) Bernardi, A. P. M.; Ferraz, A. B. F.; Albring, D. V.; Bordignon, S.
A. L.; Schripsema, J.; Bridi, R.; Dutra-Filho, C. S.; Henriques, A. T.;
Poser, G. L. V. J. Nat. Prod. 2005, 68, 784-786. b) Barros, F. M. C.;
Pippi, B.; Dresch, R. R.; Dauber, B.; Luciano, S. C.; Apel, M. A.;
Fuentefria, A. M.; Poser, G. L. V. Industrial Crops and Products
2013, 44, 294-299.
12. Narender, T.; Reddy, K. P. Tetrahedron Lett. 2007, 48, 7628–7632.
13. a) Ollevier, T.; Mwene-Mbeja, T. M. Synthesis, 2006, 23, 3963–
3966. b) Bernard, A. M.; Cocco, M.T.; Onnis, V.; Piras, P. P.
synthesis 1998, 256-260. c) Dintzner, M. R.; Morse, K. M.;
McClelland, K. M.; Coligado, D. M, Tetrahedron Lett. 2004, 45, 79–
81. d) Anjaneyulu, A. S. R.; lsaa, B. M. J. Chem. Soc., Perkin Trans.
1, 1991, 2089-2094. e) Dauben, W. G.; Cogen, J. M.; Behar, V.
Tetrahedron Lett. 1990, 31, 3241-3244. f) Ollevier, T.; Mwene-
Mbeja, T. M. Tetrahedron Lett. 2006, 47, 4051-4055. g) Yagunov, S.
E.; Kholshin, S. V.; Kandalintseva, N. V.; Prosenko, A. E.
2013, 62, 1395-1400. h) Jean, M.; Weghe,
Figure 2. Solid state structure of compound 11, as confirmed
by X-ray diffraction analysis.
P. V. D. Tetrahedron Lett. 2011, 52, 3509–3513. i) Sharma, G. V.M.;
Ilangovan, A.; Sreenivas, P.; Mahalingam, A. K. Synlett 2000, 615-
618. j) Trincado, J. B. M.; Rubio, E.; Gonzalez, J. M. J. Am. Chem.
Soc. 2002, 126, 3416-3417.
14. a) Ahluwalia, V. K.; Arora, K. K.; Jolly, R. S. J. Chem. Soc., Perkin
Trans. 1, 1982, 0, 335-338; b) Dang, T.T.; Boeck, F.; Hintermann, L.
J. Org. Chem. 2011, 76, 9353-9361. c) Gale, A. J. V.; Eichman, C. C.
Eur. J. Org. Chem. 2016, 2925–2928. d) Adrio, L. A.; Hii. K. K. M.
Chem. Commun., 2008, 2325–2327. e) Bolzoni, V. L.; Casiraghi, G.;
Casnati, G.; Sartori, G. Angew. Chem. 1978, 90, 727-728. f)
Cichewicz, R. H.; Kenyon, V. A.; Whitman, S.; Morales, N. M.;
Arguello, J. F.; Holman, T. R.; Crews, P. J. Am. Chem. Soc. 2004,
126, 14910-14920. g) Youn, S. W.; Eom, J. I. J. Org. Chem. 2006,
71, 6705-6707. h) Kalena, G. P.; Jain, A.; Banerji, A. Molecules
1997, 2, 100–105.
In conclusion, we have reported an unprecedented acid induced
tandem method for the synthesis of dihydrobenzopyrans from
cyclohexenone derivatives via C-C bond cleavage. Additionally,
we prepared the core carbon scaffolds of dimethoxyajacareubin,
15. Varghese, S.; Anand, C.; Dhawale, D.; Mano, A.; Balasubramanian,
V. V.; Raj, G. A. G.; Nagarajan, S.; Wahab, M. A.; Vinu, A.
Tetrahedron Lett. 2012, 53, 5656-5659.
cariphenone-A,
crotamadine,
from
dihydrobenzopyran
derivatives by Friedel-Crafts acylation with appropriately