R. Pandey et al. / Tetrahedron Letters 53 (2012) 3550–3555
3555
‘turn-off’ signalling with LOD 2.0 ꢀ 10ꢁ7 M for Hg2+ suggested the
possible applications of quinazolines for Hg2+ detection. It is worth
mentioning that though 1–3 detect Hg2+ through ‘turn-off’ signal-
ling, their selectivity for this cation is extremely high. Overall, this
approach provides a straightforward pathway to develop quinazo-
line receptors for Hg2+ sensing in aqueous media.
In this work we have designed and synthesized some new quin-
azolines 1–3 in reasonably good yield. Structures of 1 and 3 have
been determined crystallographically. The compounds under study
exhibit strong fluorescence at RT. The Hg2+ detection has been
demonstrated by absorption, fluorescence, 1H NMR, HRMS and
FAB-MS spectral studies. Fluorescence intensity of 1–3 quenches
selectively in the presence of Hg2+ in 1:1 stoichiometry with 1
and 2, while 1:2 (probe/metal) with 3. The interaction site of
probes has been suggested by 1H NMR titration studies. These
three probes 1–3 possess different hetero-aryl rings at 6-position;
nevertheless displayed a ‘turn-off’ switching behaviour selectively
for Hg2+ under aqueous conditions.
Academic Publishers: Dordrecht, The Netherlands, 1997; (f) Huang, S.; Clark, R.
J.; Zhu, L. Org. Lett. 2007, 9, 4999–5002; (g) Ma, D.-L.; Chan, D. S.-H.; Man, B. Y.-
W.; Leung, C.-H. Chem-An Asian J. 2011, 6, 986–1003.
3. (a) Tchounwou, P. B.; Ayensu, W. K.; Ninashvili, N.; Sutton, D. Environ. Toxicol.
2003, 18, 149–175; (b) Farina, M.; Soares, F. A.; Feoli, A.; Roehring, C.; Brusque,
A. M.; Rotta, L.; Perry, M. L.; Souza, D. O.; Rocha, J. B. T. Nutrition 2003, 19, 531–
535.
4. (a) Ko, S.-K.; Yang, Y.-K.; Tae, J.; Shin, I. J. Am. Chem. Soc. 2006, 128, 14150–
14155; (b) Yang, H.; Zhou, Z.; Huang, K.; Yu, M.; Li, F.; Yi, T.; Huang, C. Org. Lett.
2007, 9, 4729–4732; (c) Kim, J. S.; Noh, K. H.; Lee, S. H.; Kim, S. K.; Kim, S. K.;
Yoon, J. J. Org. Chem. 2003, 68, 597–600; (d) Chen, Q.-Y.; Chen, C.-F. Tetrahedron
Lett. 2005, 46, 165–168; (e) Moon, S. Y.; Cha, N. R.; Kim, Y. H.; Chang, S.-K. J. Org.
Chem. 2004, 69, 181–183.
5. (a) Zhang, J. F.; Kim, J. S. Anal. Sci. 2009, 25, 1271–1281; (b) Xie, A. J.; Zheng, Y.;
Ying, J. Y. Chem. Commun. 2010, 46, 961–963; (c) Tsukamoto, K.; Shinohara, Y.;
Iwasaki, S.; Maeda, H. Chem. Commun. 2011, 47, 5073–5075; (d) Liu, X.; Shu, X.;
Zhou, X.; Zhang, X.; Zhu, J. J. Phys. Chem. A 2010, 114, 13370–13375; (e)
Shiraishi, Y.; Sumiya, S.; Hirai, T. Org. Biomol. Chem. 2010, 8, 1310–1314.
6. (a) Yu, Y.; Lin, L.-R.; Yang, K.-B.; Zhong, X.; Huang, R.-B.; Zheng, L.-S. Talanta
2006, 69, 103–106; (b) de Silva, A. P.; Fox, D. P.; Huxley, A. J. M.; Moody, T. S.
Coord. Chem. Rev. 2000, 205, 41–57; (c) Bag, B.; Bharadwaj, P. K. Inorg. Chem.
2004, 43, 4626–4630; (d) Suresh, M.; Jose, D. A.; Das, A. Org. Lett. 2007, 9, 441–
444; (e) Ghosh, A.; Ganguly, B.; Das, A. Inorg. Chem. 2007, 46, 9912–9918.
7. (a) Morguntsova, S. A.; Belenichev, I. F.; Abramov, A. V. Dosyagnennya Biologii ta
Meditsini 2009, 2, 67–70; (b) Ismail, M. A. H.; Barker, S.; El Ella, D. A. A.;
Abouzid, K. A. M.; Toubar, R. A.; Todd, M. H. J. Med. Chem. 2006, 49, 1526–1535;
(c) Galandová, J.; Ovádeková, R.; Ferancová, A.; Labuda, J. Anal Bioanal Chem
2009, 394, 855–861; (d) Gellibert, F.; Fouchet, M.-H.; Nguyen, V.-L.; Wang, R.;
Krysa, G.; de Gouville, A.-C.; Huet, S.; Dodic, N. Bioorg. Med. Chem. Lett. 2009, 19,
2277–2281.
Acknowledgements
Thanks are due to the Department of Science and Technology
(DST), New Delhi, India for providing financial assistance through
the Scheme SR/S1/IC-15/2006. One of the authors (RP) is grateful
to the Council of Scientific and Industrial Research (CSIR), New Del-
hi, India for providing financial assistance through Senior Research
Fellowship (9/13(288)/2010-EMR-I).
8. (a) Saha, U. C.; Chattopadhyay, B.; Dhara, K.; Mandal, S. K.; Sarkar, S.; Khuda-
Bukhsh, A. R.; Mukherjee, M.; Helliwell, M.; Chattopadhyay, P. Inorg. Chem.
2011, 50, 1213–1219; (b) Luoa, H.-Y.; Zhang, X.-B.; Hea, C.-L.; Shen, G.-L.; Yu,
R.-Q. Spectrochim. Acta (A) 2008, 70, 337–342; (c) Chinigo, G. M.; Paige, M.;
Grindrod, S.; Hamel, E.; Dakshanamurthy, S.; Chruszcz, M.; Minor, W.; Brown,
M. L. J. Med. Chem. 2008, 51, 4620–4631.
9. (a) Booysen, I.; Gerber, A. I. A.; Mayer, P. J. Coord. Chem. 2008, 61, 1525–1531;
(b) Chhonker, Y. S.; Veenus, B.; Hasim, S.; Kaushik, R. N.; Kumar, D.; Kumar, P.
E-J. Chem. 2009, 6, S342.
Supplementary data
10. (a) Rohini, R.; Shanker, K.; Reddy, P. M.; Ho, Y.-P.; Ravinder, V. Eur. J. Med. Chem.
2009, 44, 3330–3339; (b) Lyakhova, E. A.; Gusyeva, Y. A.; Nekhoroshkova, J. V.;
Shafran, L. M.; Lyakhov, S. A. Eur. J. Med. Chem. 2009, 44, 3305–3312.
11. Misra, A.; Shahid, M. J. Phys. Chem. C 2010, 114, 16726–16739.
12. (a) Hirano, K.; Oderaotoshi, Y.; Minataka, S.; Unique, K. M Chem. Lett. 2001,
1262–1263; (b) Vivas-Mejía, P.; Rodríguez-Cabán, J. L.; Díaz-Velázquez, M.;
Hernández-Pérez, M. G.; Cox, O.; Gonzalez, F. A. Mol. Cell. Biochem. 1997, 177,
69–77.
Instrumental details, 1H and 13C NMR spectra, experimental de-
tails of 1–3, scheme for the preparation of 1–4, 1H NMR description
for 1–3, absorption and fluorescence data, B-H plots for binding
constants, binding modes of 1 and 3 with Hg2+, Mass spectra, crys-
tallographic data of 1 and 3 in CIF format [CCDC deposition Nos.
792047 (1) and 792048 (3)].
13. (a) Shirdel, J.; Penzkofer, A.; Procházka, R.; Shen, Z.; Strauss, J.; Daub, J. Chem.
Phys. 2007, 331, 427–437; (b) Yslas, E. I.; Rivarola, V.; Durantini, E. N. Bioorg.
Med. Chem. 2005, 13, 39–46; (c) Lin, P. Chem. Rev. 2004, 104, 1687–1716; (d)
Prabhakar, M.; Zacharias, P. S.; Das, S. K. Inorg. Chem. 2005, 44, 2585–2587.
14. (a) Goodall, W.; Williams, J. A. G. Chem. Commun. 2001, 2514–2515; (b)
Goswami, S.; Sen, D.; Das, N. K.; Hazra, G. Tetrahedron Letters 2010, 51, 5563–
5566; (c) Wang, J.; Qian, X.; Cui, J. J. Org. Chem. 2006, 71, 4308–4311.
15. (a) Connors, K. A. Binding Constants; Wiley: New York, 1987; (b) Benesi, H. A.;
Hildebrand, J. H. J. Am. Chem. Soc. 1949, 71, 2703; (c) Mashraqui, S. H.; Khan, T.;
Sundaram, S.; Betkar, R.; Chandiramani, M. Tetrahedron Lett. 2007, 48, 8487–
8490.
16. Zhou, H.-P.; Gan, X.-P.; Li, X.-L.; Liu, Z.-D.; Geng, W.-Q.; Zhou, F.-X.; Ke, W.-Z.;
Wang, P.; Kong, L.; Hao, F.-Y.; Wu, J.-Y.; Tian, Y.-P. Cryst Growth & Des. 2010, 10,
1767–1776.
17. (a) Wu, Z.; Zhang, Y.; Ma, J. S.; Yang, G. Inorg. Chem. 2006, 45, 3140–3142; (b)
Fukushima, K.; Iwahashi, H. Chem. Commun. 2000, 895–896.
Supplementary data associated with this article can be found, in
References and notes
1. (a) Nolan, E. M.; Lippard, S. J. Chem. Rev. 2008, 108, 3443–3480; (b) Fabbrizzi, L.;
Poggi, A. Chem. Soc. Rev. 1995, 197–202; Martínez-Mánez, R.; Sancenón, F.
Chem. Rev. 2003, 103, 4419; (c) Kim, H. N.; Lee, M. H.; Kim, H. J.; Kim, J. S.; Yoon,
J. Chem. Soc. Rev. 2008, 37, 1465–1472; (d) Huang, W.; Song, C.; He, C.; Lv, G.;
Hu, X.; Zhu, X.; Duan, C. Inorg. Chem. 2009, 48, 5061; (e) Li, H.; Zhaia, J.; Sun, X.
Analyst 2011, 136, 2040–2043; (f) Coskun, A.; Yilmaz, M. D.; Akkaya, E. U. Org.
Lett. 2007, 9, 607–609; (g) Ho, M.-L.; Chen, K.-Y.; Lee, G.-H.; Chen, Y.-C.; Wang,
C.-C.; Lee, J.-F.; Chung, W.-C.; Chou, P. T. Inorg. Chem. 2009, 48, 10304–10311.
2. (a) Valeur, B.; Leray, I. Coord. Chem. Rev. 2000, 205, 3–40; (b) Amendola, V.;
Fabbrizzi, L.; Licchelli, M.; Mangano, C.; Pallavicini, P.; Parodi, L.; Poggi, A.
Coord. Chem. Rev. 1999, 190–192, 649–669; (c) Nikolaev, V. O.; Gambaryan, S.;
Lohse, M. J. Nature Methods 2006, 3, 23–25; (d) Zhang, J.; Campbell, R. E.; Ting,
A. Y.; Tisen, R. Y. Nat. Rev. Mol. Cell Biol. 2002, 3, 906–918; (e) Chemosensors for
Ion and Molecule Recognition; Desvergne, J. P., Czarnik, A. W., Eds.; Kluwer
18. (a) Melnick, J. G.; Yurkerwich, K.; Parkin, G. Inorg. Chem. 2009, 48, 6763–6772;
(b) Wang, F.; Schwabacher, A. W. J. Org. Chem. 1999, 64, 8922–8928; (c) Moon,
S.-Y.; Youn, N. J.; Park, S. M.; Chang, S.-K. J. Org. Chem. 2005, 70, 2394–2397; (d)
Rurack, K. Spectrochim Acta, A 2001, 57, 2161–2195; (e) Probe Design and
Chemical Sensing In Topics in Fluorescence Spectroscopy; Lakowicz, J. R., Ed.;
Kluwer: Hingham, 1994; Vol. 4, p 56.